192
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Development and External Validation of Nomogram to Identify Risk Factors for CHD in T2DM in the Population of Northwestern China

, , , , , , , , , & show all
Pages 1271-1282 | Received 13 Jan 2023, Accepted 30 Apr 2023, Published online: 04 May 2023

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151
  • Ma L-Y, Chen -W-W, Gao R-L, et al. China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol. 2020;17(1):1–8. doi:10.11909/j.issn.1671-5411.2020.01.001
  • Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. doi:10.1186/s12933-018-0728-6
  • Pearson TA. New tools for coronary risk assessment: what are their advantages and limitations? Circulation. 2002;105(7):886–892. doi:10.1161/hc0702.103727
  • Straka RJ, Liu LZ, Girase PS, DeLorenzo A, Chapman RH. Incremental cardiovascular costs and resource use associated with diabetes: an assessment of 29,863 patients in the US managed-care setting. Cardiovasc Diabetol. 2009;8(1):53. doi:10.1186/1475-2840-8-53
  • Taylor KS, Heneghan CJ, Farmer AJ, et al. All-cause and cardiovascular mortality in middle-aged people with type 2 diabetes compared with people without diabetes in a large U.K. primary care database. Diabetes Care. 2013;36(8):2366–2371. doi:10.2337/dc12-1513
  • Sezer M, Kocaaga M, Aslanger E, et al. Bimodal pattern of coronary microvascular involvement in diabetes mellitus. J Am Heart Assoc. 2016;5(11). doi:10.1161/JAHA.116.003995
  • Casanova F, Adingupu DD, Adams F, et al. The impact of cardiovascular co-morbidities and duration of diabetes on the association between microvascular function and glycaemic control. Cardiovasc Diabetol. 2017;16(1):114. doi:10.1186/s12933-017-0594-7
  • Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb. 2018;25(1):27–39. doi:10.5551/jat.RV17014
  • Park SY. Nomogram: an analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg. 2018;155(4):1793. doi:10.1016/j.jtcvs.2017.12.107
  • Xiao S, Dong Y, Huang B, Jiang X. Predictive nomogram for coronary heart disease in patients with type 2 diabetes mellitus. Front Cardiovasc Med. 2022;9:1052547. doi:10.3389/fcvm.2022.1052547
  • American Diabetes Association Professional Practice Committee, American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl1):S17–S38. doi:10.2337/dc22-S002
  • Kjeldsen SE, Farsang C, Sleigh P, Mancia G; World Health Organization; International Society of Hypertension. 1999 WHO/ISH hypertension guidelines--highlights and esh update. J Hypertens. 2001;19(12):2285–2288. doi:10.1097/00004872-200112000-00026
  • Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. doi:10.1093/eurheartj/ehz425
  • Dhatariya KK, Glaser NS, Codner E, Umpierrez GE. Diabetic ketoacidosis. Nat Rev Dis Primers. 2020;6(1):40. doi:10.1038/s41572-020-0165-1
  • van Netten JJ, Bus SA, Apelqvist J, et al. Definitions and criteria for diabetic foot disease. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3268. doi:10.1002/dmrr.3268
  • Weng J, Ji L, Jia W, et al. Standards of care for type 2 diabetes in China. Diabetes Metab Res Rev. 2016;32(5):442–458. doi:10.1002/dmrr.2827
  • Shi R, Wu B, Niu Z, Sun H, Hu F. Nomogram based on risk factors for type 2 diabetes mellitus patients with coronary heart disease. Diabetes Metab Syndr Obes. 2020;13:5025–5036. doi:10.2147/DMSO.S273880
  • Chen QJ, Lai HM, Chen BD, et al. Appropriate LDL-C-to-HDL-C ratio cutoffs for categorization of cardiovascular disease risk factors among Uygur adults in Xinjiang, China. Int J Environ Res Public Health. 2016;13(2):235. doi:10.3390/ijerph13020235
  • Pursnani S, Merchant M. South Asian ethnicity as a risk factor for coronary heart disease. Atherosclerosis. 2020;315:126–130. doi:10.1016/j.atherosclerosis.2020.10.007
  • Fernando E, Razak F, Lear SA, Anand SS. Cardiovascular disease in South Asian migrants. Can J Cardiol. 2015;31(9):1139–1150. doi:10.1016/j.cjca.2015.06.008
  • Pan S, Yu ZX, Ma YT, et al. Appropriate body mass index and waist circumference cutoffs for categorization of overweight and central adiposity among Uighur adults in Xinjiang. PLoS One. 2013;8(11):e80185. doi:10.1371/journal.pone.0080185
  • Li X, Shan CF, Liu F, et al. Comparison on the 10 years risk for ischemic cardiovascular disease among Han, Uygur, Kazak population from Xinjiang Uygur Autonomous region. Zhonghua Xin Xue Guan Bing Za Zhi. 2019;47(6):486–491. doi:10.3760/cma.j.issn.0253-3758.2019.06.011
  • Li X, Ma YT, Xie X, et al. Association of Egr3 genetic polymorphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis. 2014;13:84. doi:10.1186/1476-511X-13-84
  • Ma L, Yuan Y, Li J, Yu C, Zhao J. Distribution of CYP2C19, ABCB1 and PON1 polymorphisms in Chinese Han, Hui, Uygur and Kazak patients with coronary atherosclerotic heart disease. Int J Immunogenet. 2020;47(6):539–545. doi:10.1111/iji.12511
  • Lai HM, Li XM, Yang YN, et al. Genetic variation in NFKB1 and NFKBIA and susceptibility to coronary artery disease in a Chinese Uygur population. PLoS One. 2015;10(6):e0129144. doi:10.1371/journal.pone.0129144
  • Yu F, Liu F, Li XM, et al. GLUT4 gene rs5418 polymorphism is associated with increased coronary heart disease risk in a Uygur Chinese population. BMC Cardiovasc Disord. 2022;22(1):191. doi:10.1186/s12872-022-02630-9
  • Genders TS, Steyerberg EW, Alkadhi H, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011;32(11):1316–1330. doi:10.1093/eurheartj/ehr014
  • Kolovou G, Kolovou V, Koutelou M, Mavrogeni S. Atherosclerotic and non-atherosclerotic coronary heart disease in women. Curr Med Chem. 2015;22(31):3555–3564. doi:10.2174/0929867322666150904105941
  • Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58–68. doi:10.1038/s41569-020-0431-7
  • Alonso-Morán E, Orueta JF, Fraile Esteban JI, et al. The prevalence of diabetes-related complications and multimorbidity in the population with type 2 diabetes mellitus in the Basque Country. BMC Public Health. 2014;14:1059. doi:10.1186/1471-2458-14-1059
  • Weber T, Lang I, Zweiker R, et al. Hypertension and coronary artery disease: epidemiology, physiology, effects of treatment, and recommendations: a joint scientific statement from the Austrian society of cardiology and the Austrian society of hypertension. Wien Klin Wochenschr. 2016;128(13–14):467–479. doi:10.1007/s00508-016-0998-5
  • Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;31(Suppl 2):S185–S189. doi:10.2337/dc08-s246
  • Prasad K. Current status of primary, secondary, and tertiary prevention of coronary artery disease. Int J Angiol. 2021;30(3):177–186. doi:10.1055/s-0041-1731273
  • Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens. 2014;32(12):2285–2295. doi:10.1097/HJH.0000000000000378
  • Leong A, Chen J, Wheeler E, et al. Mendelian randomization analysis of hemoglobin A(1c) as a risk factor for coronary artery disease. Diabetes Care. 2019;42(7):1202–1208. doi:10.2337/dc18-1712
  • Rezende PC, Hlatky MA, Hueb W, et al. Association of longitudinal values of glycated hemoglobin with cardiovascular events in patients with type 2 diabetes and multivessel coronary artery disease. JAMA Netw Open. 2020;3(1):e1919666. doi:10.1001/jamanetworkopen.2019.19666
  • Yan Y, Gao R, Zhang S, et al. Hemoglobin A1c and angiographic severity with coronary artery disease: a cross-sectional study. Int J Gen Med. 2022;15:1485–1495. doi:10.2147/IJGM.S346525
  • Liu L, Ye J, Ying M, et al. The U-shape relationship between glycated hemoglobin level and long-term all-cause mortality among patients with coronary artery disease. Front Cardiovasc Med. 2021;8:632704. doi:10.3389/fcvm.2021.632704
  • Lynn Fillipon NM, Kitkungvan D, Dani SS, Downey BC. The relationship between glycosylated hemoglobin and myocardial perfusion imaging. Clin Cardiol. 2012;35(9):565–569. doi:10.1002/clc.22028
  • Boren J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41(24):2313–2330. doi:10.1093/eurheartj/ehz962
  • Kawashiri MA, Sakata K, Hayashi K, et al. Impact of combined lipid lowering and blood pressure control on coronary plaque: myocardial ischemia treated by percutaneous coronary intervention and plaque regression by lipid lowering and blood pressure controlling assessed by intravascular ultrasonography (MILLION) study. Heart Vessels. 2017;32(5):539–548. doi:10.1007/s00380-016-0910-2
  • Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2017;38(32):2459–2472. doi:10.1093/eurheartj/ehx144
  • Baigent C, Blackwell L; Cholesterol Treatment Trialists C. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–1681. doi:10.1016/S0140-6736(10)61350-5
  • Silverman MG, Ference BA, Im K, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316(12):1289–1297. doi:10.1001/jama.2016.13985
  • Di Angelantonio E, Sarwar N; Emerging Risk Factors C. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000. doi:10.1001/jama.2009.1619
  • Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–232. doi:10.1038/nrcardio.2010.222
  • White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res. 2014;55(10):2007–2021. doi:10.1194/jlr.R051367
  • Kardassis D, Mosialou I, Kanaki M, Tiniakou I, Thymiakou E. Metabolism of HDL and its regulation. Curr Med Chem. 2014;21(25):2864–2880. doi:10.2174/0929867321666140303153430