204
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Investigation of Monogenic Diabetes Genes in Thai Children with Autoantibody Negative Diabetes Requiring Insulin

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 795-808 | Received 21 Nov 2023, Accepted 03 Feb 2024, Published online: 14 Feb 2024

References

  • The Expert Committee on the D, Classification of Diabetes M. Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20(7):1183–1197. doi:10.2337/diacare.20.7.1183
  • Watkins RA, Evans-Molina C, Blum JS, DiMeglio LA. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res. 2014;164(2):110–121. doi:10.1016/j.trsl.2014.02.004
  • Dejkhamron P, Santiprabhob J, Likitmaskul S, et al. Young-onset diabetes patients in Thailand: data from Thai type 1 diabetes and diabetes diagnosed age before 30 years Registry, Care and Network (T1DDAR CN). J Diabetes Investig. 2022;13(5):796–809. doi:10.1111/jdi.13732
  • Hattersley AT, Greeley SAW, Polak M, et al. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):47–63. doi:10.1111/pedi.12772
  • Bansal V, Gassenhuber J, Phillips T, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med. 2017;15(1):213. doi:10.1186/s12916-017-0977-3
  • Plengvidhya N, Tangjittipokin W, Teerawattanapong N, Narkdontri T, Yenchitsomanus P-T. HNF1A mutation in a Thai patient with maturity-onset diabetes of the young: a case report. World J Diabetes. 2019;10(7):414–420. doi:10.4239/wjd.v10.i7.414
  • Plengvidhya N, Kooptiwut S, Songtawee N, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92(7):2821–2826. doi:10.1210/jc.2006-1927
  • American Diabetes Association. Standards of Medical Care in Diabetes—2018 abridged for primary care providers. Clin Diabetes. 2018;36(1):14–37. doi:10.2337/cd17-0119
  • Bingley PJ, Bonifacio E, Mueller PW. Diabetes antibody standardization program: first assay proficiency evaluation. Diabetes. 2003;52(5):1128–1136. doi:10.2337/diabetes.52.5.1128
  • Li J, Shi L, Zhang K, et al. VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 2018;46:D1039–D1048.
  • Firdous P, Nissar K, Ali S, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol. 2018;9:253. doi:10.3389/fendo.2018.00253
  • Sujjitjoon J, Kooptiwut S, Chongjaroen N, et al. PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects. J Hum Genet. 2016;61(11):943–949. doi:10.1038/jhg.2016.80
  • Anuradha S, Radha V, Deepa R, et al. A prevalent amino acid polymorphism at codon 98 (Ala98Val) of the hepatocyte nuclear factor-1 alpha is associated with maturity-onset diabetes of the young and younger age at onset of type 2 diabetes in Asian Indians. Diabetes Care. 2005;28(10):2430–2435. doi:10.2337/diacare.28.10.2430
  • Ağladıoğlu SY, Aycan Z, Çetinkaya S, et al. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab. 2016;29(4):487–496. doi:10.1515/jpem-2015-0039
  • Choi HJ, Lee JS, Yu S, et al. Whole-exome sequencing identified a missense mutation in WFS1 causing low-frequency hearing loss: a case report. BMC Med Genet. 2017;18(1):151. doi:10.1186/s12881-017-0511-7
  • Baek J-I, Oh S-K, Kim D-B, et al. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hearing loss in small families. Orphanet J Rare Dis. 2012;7(1):60. doi:10.1186/1750-1172-7-60
  • Kwak SH, Jung C-H, Ahn CH, et al. Clinical whole exome sequencing in early onset diabetes patients. Diabetes Res Clin Pract. 2016;122:71–77. doi:10.1016/j.diabres.2016.10.005
  • Riching AS, Danis E, Zhao Y, et al. Suppression of canonical TGF-β signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. J Mol Cell Cardiol. 2021;153:44–59. doi:10.1016/j.yjmcc.2020.12.005
  • Liu G, Yang F, Han B, Liu J, Nie G. Identification of four SLC19A2 mutations in four Chinese thiamine responsive megaloblastic anemia patients without diabetes. Blood Cells Mol Dis. 2014;52(4):203–204. doi:10.1016/j.bcmd.2013.11.002
  • Madani HA, Fawzy N, Afif A, Abdelghaffar S, Gohar N. Study of KCNJ11 gene mutations in association with monogenic diabetes of infancy and response to sulfonylurea treatment in a cohort study in Egypt. Acta endocrinologica. 2016;12(2):157–160. doi:10.4183/aeb.2016.157
  • Cockburn BN, Bermano G, Boodram L-LG, et al. Insulin promoter factor-1 mutations and diabetes in Trinidad: identification of a novel diabetes-associated mutation (E224K) in an Indo-Trinidadian family. J Clin Endocrinol Metab. 2004;89(2):971–978. doi:10.1210/jc.2003-031282
  • Stanik J, Dusatkova P, Cinek O, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480–484. doi:10.1007/s00125-013-3119-2
  • Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The diabetes-linked transcription factor PAX4: from gene to functional consequences. Genes. 2017;9(1):8. doi:10.3390/genes9010008
  • Cheung CY, Tang CS, Xu A, et al. Exome-chip association analysis reveals an Asian-specific missense variant in PAX4 associated with type 2 diabetes in Chinese individuals. Diabetologia. 2017;60(1):107–115. doi:10.1007/s00125-016-4132-z
  • Kooptiwut S, Plengvidhya N, Chukijrungroat T, et al. Defective PAX4 R192H transcriptional repressor activities associated with maturity onset diabetes of the young and early onset-age of type 2 diabetes. J Diabet Complicat. 2012;26(4):343–347. doi:10.1016/j.jdiacomp.2012.03.025
  • Ang SF, Tan CSH, Wang L, et al. PAX4 R192H is associated with younger onset of Type 2 diabetes in East Asians in Singapore. J Diabet Complicat. 2019;33:53–58. doi:10.1016/j.jdiacomp.2018.10.002
  • Chambers C, Fouts A, Dong F, et al. Characteristics of maturity onset diabetes of the young in a large diabetes center. Pediatr Diabetes. 2016;17(5):360–367. doi:10.1111/pedi.12289
  • Bonatto N, Nogaroto V, Svidnicki PV, et al. Variants of the HNF1alpha gene: a molecular approach concerning diabetic patients from southern Brazil. Genet Mol Biol. 2012;35(4):737–740. doi:10.1590/S1415-47572012005000061
  • Tin A, Marten J, Halperin Kuhns VL, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51(10):1459–1474. doi:10.1038/s41588-019-0504-x
  • Abreu D, Asada R, Revilla JMP, et al. Wolfram syndrome 1 gene regulates pathways maintaining beta-cell health and survival. Lab Invest. 2020;100(6):849–862. doi:10.1038/s41374-020-0408-5
  • Awata T, Inoue K, Kurihara S, et al. Missense variations of the gene responsible for Wolfram syndrome (WFS1/wolframin) in Japanese: possible contribution of the Arg456His mutation to type 1 diabetes as a nonautoimmune genetic basis. Biochem Biophys Res Commun. 2000;268(2):612–616. doi:10.1006/bbrc.2000.2169
  • Rohayem J, Ehlers C, Wiedemann B, et al. Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype. Diabetes Care. 2011;34(7):1503–1510. doi:10.2337/dc10-1937
  • Xuan S, Borok MJ, Decker KJ, et al. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest. 2012;122(10):3516–3528. doi:10.1172/JCI63352
  • Kalayinia S, Maleki M, Rokni-Zadeh H, et al. GATA4 screening in Iranian patients of various ethnicities affected with congenital heart disease: co-occurrence of a novel de novo translocation (5;7) and a likely pathogenic heterozygous GATA4 mutation in a family with autosomal dominant congenital heart disease. J Clin Lab Anal. 2019;33:e22923.
  • Lin X, Huo Z, Liu X, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55(10):662–667. doi:10.1038/jhg.2010.84
  • Phani NM, Guddattu V, Bellampalli R, et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One. 2014;9:e107021.
  • Olety SS, Vellakampadi D. TRMA syndrome (thiamine-responsive megaloblastic anaemia): an example of rare monogenic diabetes: is thiamine a magic pill for anaemia and diabetes? Int j Diabetes Dev Countries. 2016;36(4):389–392. doi:10.1007/s13410-016-0478-5
  • Piccand J, Strasser P, Hodson DJ, et al. Rfx6 maintains the functional identity of adult pancreatic β cells. Cell Rep. 2014;9(6):2219–2232. doi:10.1016/j.celrep.2014.11.033
  • Chandra V, Albagli-Curiel O, Hastoy B, et al. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells. Cell Rep. 2014;9(6):2206–2218. doi:10.1016/j.celrep.2014.11.010
  • Patel KA, Kettunen J, Laakso M, et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun. 2017;8(1):888. doi:10.1038/s41467-017-00895-9
  • De Franco E, Shaw‐Smith C, Flanagan SE, et al. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabetic Med. 2013;30(5):e197–200. doi:10.1111/dme.12122