354
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic Nephropathy

, , , , , ORCID Icon & show all
Pages 1669-1684 | Received 12 Apr 2023, Accepted 31 May 2023, Published online: 07 Jun 2023

References

  • Bikbov B, Purcell CA, Levey AS.; GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395:709–733. doi:10.1016/S0140-6736(20)30045-3
  • Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol. 2013;58:259–271. doi:10.1016/j.vph.2013.01.001
  • Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15:327–345. doi:10.1038/s41581-019-0135-6
  • Ruggenenti P, Flores C, Aros C, et al. Renal and metabolic effects of insulin lispro in type 2 diabetic subjects with overt nephropathy. Diabetes Care. 2003;26:502–509. doi:10.2337/diacare.26.2.502
  • Mahato HS, Ahlstrom C, Jansson-Löfmark R, et al. Mathematical model of hemodynamic mechanisms and consequences of glomerular hypertension in diabetic mice. NPJ Syst Biol Appl. 2019;5(2). doi:10.1038/s41540-019-0081-8
  • Yu K, Li D, Xu F, et al. IDO1 as a new immune biomarker for diabetic nephropathy and its correlation with immune cell infiltration. Int Immunopharmacol. 2021;94:107446. doi:10.1016/j.intimp.2021.107446
  • Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol. 2017;13:311–318. doi:10.1038/nrneph.2017.31
  • Tesch GH. Diabetic nephropathy - is this an immune disorder? Clin Sci. 2017;131:2183–2199. doi:10.1042/CS20160636
  • Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci. 2020;21:E3798. doi:10.3390/ijms21113798
  • Klessens CQF, Zandbergen M, Wolterbeek R, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant. 2017;32:1322–1329. doi:10.1093/ndt/gfw260
  • C Q, X M, Z Z, H W. Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res. 2017;2017:1.
  • Bhattacharya S, Andorf S, Gomes L, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res. 2014;58:234–239. doi:10.1007/s12026-014-8516-1
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi:10.1186/1471-2105-9-559
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi:10.1093/nar/gkw1092
  • Zhang Y, Liao H, Shen D, et al. Renal protective effects of Inonotus obliquus on high-fat diet/streptozotocin-induced diabetic kidney disease rats: biochemical, color Doppler ultrasound and histopathological evidence. Front Pharmacol. 2021;12:743931. doi:10.3389/fphar.2021.743931
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–457. doi:10.1038/nmeth.3337
  • Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine. 2015;48:730–742. doi:10.1007/s12020-014-0437-1
  • Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16:206–222. doi:10.1038/s41581-019-0234-4
  • Dh N, Lee MH, Kim JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology. 2012;153:1387–1396.
  • Brosius FC, He JC. JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens. 2015;24:88–95. doi:10.1097/MNH.0000000000000079
  • Lampropoulou IT, Stangou Μ, Sarafidis P, et al. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in type II diabetes mellitus. Clin Immunol. 2020;215:108423. doi:10.1016/j.clim.2020.108423
  • Kim S-M, Lee S-H, Lee A, et al. Targeting T helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. Transl Res. 2015;166:375–383. doi:10.1016/j.trsl.2015.04.013
  • Zhang F, Wang C, Wen X, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs-mediated CD8 + T cell responses. J Cell Mol Med. 2020;24:5817–5831. doi:10.1111/jcmm.15250
  • Han H, Chen Y, Yang H, et al. Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms. Front Endocrinol. 2022;13:876960. doi:10.3389/fendo.2022.876960
  • Belur Nagaraj S, Pena MJ, Ju W, Heerspink HL. Machine‐learning–based early prediction of end‐stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020;22:2479–2486. doi:10.1111/dom.14178
  • Zhang Z, Wang Z-X, Chen Y-X, et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 2022;14:45. doi:10.1186/s13073-022-01050-w
  • Kumar Singh P, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: a kinase target in inflammatory mediated pathological conditions. Biomed Pharmacother. 2018;108:1565–1571. doi:10.1016/j.biopha.2018.10.002
  • Hulme JS, Barratt BJ, Twells RCJ, et al. Association analysis of the lymphocyte-specific protein tyrosine kinase (LCK) gene in type 1 diabetes. Diabetes. 2004;53:2479–2482. doi:10.2337/diabetes.53.9.2479
  • Rowe JH, Delmonte OM, Keles S, et al. Patients with CD3G mutations reveal a role for human CD3γ in Treg diversity and suppressive function. Blood. 2018;131:2335–2344. doi:10.1182/blood-2018-02-835561
  • Yu T, Xu B, Bao M, et al. Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: a transcriptomics study. Front Endocrinol. 2022;13:981100. doi:10.3389/fendo.2022.981100
  • Lu J, Bi Y, Zhu Y, Huipeng S, Duan W, Zhou J. CD3D, GZMK, and KLRB1 are potential markers for early diagnosis of rheumatoid arthritis, especially in anti-citrullinated protein antibody-negative patients. Front Pharmacol. 2021;12:726529. doi:10.3389/fphar.2021.726529
  • Feng Y, Yang S, Ma Y, Bai X-Y, Chen X. Role of Toll-like receptors in diabetic renal lesions in a miniature pig model. Sci Adv. 2015;1:e1400183. doi:10.1126/sciadv.1400183
  • Huang J, Peng J, Pearson JA, et al. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cell Mol Immunol. 2021;18:328–338. doi:10.1038/s41423-020-00590-8
  • Geng X-D, Wang WW, Feng Z, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis. J Diabetes Investig. 2019;10:972–984. doi:10.1111/jdi.12986
  • Lee L-F, Logronio K, Tu GH, et al. Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc Natl Acad Sci USA. 2012;109:12674–12679. doi:10.1073/pnas.1203795109
  • Yang X, Mou S. Role of immune cells in diabetic kidney disease. Curr Gene Ther. 2017;17:424–433. doi:10.2174/1566523218666180214100351
  • Moon J-Y, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol. 2012;35:164–174. doi:10.1159/000334928
  • Herrera M, Söderberg M, Sabirsh A, et al. Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. Am J Physiol Renal Physiol. 2017;312:F748–F759. doi:10.1152/ajprenal.00179.2016
  • Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361:2143–2152. doi:10.1056/NEJMoa0904452
  • Pescovitz MD, Greenbaum CJ, Bundy B, et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results. Diabetes Care. 2014;37:453–459. doi:10.2337/dc13-0626
  • Smith MJ, Simmons KM, Cambier JC. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol. 2017;13:712–720. doi:10.1038/nrneph.2017.138
  • Zheng H, Zhang Y, He J, et al. Hydroxychloroquine inhibits macrophage activation and attenuates renal fibrosis after ischemia-reperfusion injury. Front Immunol. 2021;12:645100. doi:10.3389/fimmu.2021.645100
  • Sakata K, Nakayamada S, Miyazaki Y, et al. Up-regulation of TLR7-mediated IFN-α production by plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Front Immunol. 2018;9:1957. doi:10.3389/fimmu.2018.01957
  • Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R155. doi:10.1186/ar3895
  • Chen X, Sheng D, Kong X. The efficacy of hydroxychloroquine combined with Huangqi tablets in the treatment of diabetic nephropathy. J Healthc Eng. 2021;2021:7988924. doi:10.1155/2021/7988924