330
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identifying Metabolic Syndrome Easily and Cost Effectively Using Non-Invasive Methods with Machine Learning Models

, , , , ORCID Icon, , , , & ORCID Icon show all
Pages 2141-2151 | Received 03 Apr 2023, Accepted 11 Jul 2023, Published online: 17 Jul 2023

References

  • Alberti K, Zimmet P, Shaw J. The metabolic syndrome - a new worldwide definition. Lancet. 2005;366(9491):1059–1062. doi:10.1016/S0140-6736(05)67402-8
  • Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–1132. doi:10.1016/j.jacc.2010.05.034
  • Kitiyakara C, Yamwong S, Cheepudomwit S, et al. The metabolic syndrome and chronic kidney disease in a Southeast Asian cohort. Kidney Int. 2007;71(7):693–700. doi:10.1038/sj.ki.5002128
  • Cleeman J, Grundy S, Becker D, et al. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497. doi:10.1001/jama.285.19.2486
  • Ibrahim MS, Pang D, Randhawa G, Pappas Y. Risk models and scores for metabolic syndrome: systematic review protocol. BMJ Open. 2019;9(9):e027326. doi:10.1136/bmjopen-2018-027326
  • Grundy S, Cleeman J, Daniels S, et al. Diagnosis and management of the metabolic syndrome - an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–2752. doi:10.1161/CIRCULATIONAHA.105.169404
  • Alberti K, Zimmet P; WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus - Provisional report of a WHO consultation. Diabetic Med. 1998;15(7):539–553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  • Balkau B, Charles M. Comment on the provisional report from the WHO consultation. Diabetic Med. 1999;16(5):442–443.
  • Pang C, Jia L, Hou X, et al. The significance of screening for microvascular diseases in Chinese community-based subjects with various metabolic abnormalities. PLoS One. 2014;9(5):e97928. doi:10.1371/journal.pone.0097928
  • Cefalu WT, Rodgers GP. COVID-19 and metabolic diseases: a heightened awareness of health inequities and a renewed focus for research priorities. Cell Metab. 2021;33(3):473–478. doi:10.1016/j.cmet.2021.02.006
  • Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2). doi:10.1007/s11906-018-0812-z
  • Hirode G, Wong R. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA. 2020;323(24):2526–2528. doi:10.1001/jama.2020.4501
  • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults - findings from the Third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–359. doi:10.1001/jama.287.3.356
  • Chen B, Yang D, Chen Y, Xu W, Ye B, Ni Z. The prevalence of microalbuminuria and its relationships with the components of metabolic syndrome in the general population of China. Clinica Chimica Acta. 2010;411(9–10):705–709. doi:10.1016/j.cca.2010.01.038
  • Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365(9468):1398–1405. doi:10.1016/S0140-6736(05)66375-1
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–582. doi:10.1148/radiol.2017162326
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-+. doi:10.1038/nature21056
  • Worachartcheewan A, Schaduangrat N, Prachayasittikul V, Nantasenamat C. Data mining for the identification of metabolic syndrome status. EXCLI J. 2018;17:72–88. doi:10.17179/excli2017-911
  • Hsu NW, Chou KC, Wang YTT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med. 2022;20(1). doi:10.1186/s12967-022-03379-7
  • Karimi-Alavijeh F, Jalili S, Sadeghi M. Predicting metabolic syndrome using decision tree and support vector machine methods. ARYA Atheroscler. 2016;12(3):146–152.
  • Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Quantitative Population-Health Relationship (QPHR) for assessing metabolic syndrome. EXCLI J. 2013;12:569–583. doi:10.2478/s11696-013-0398-5.
  • Lin Z, Vicente Goncalves CM, Dai L, et al. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models. Anal Chim Acta. 2014;827:22–27. doi:10.1016/j.aca.2014.04.008
  • Hirose H, Takayama T, Hozawa S, Hibi T, Saito I. Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Comp Biol Med. 2011;41(11):1051–1056. doi:10.1016/j.compbiomed.2011.09.005
  • Ushida Y, Kato R, Niwa K, et al. Combinational risk factors of metabolic syndrome identified by fuzzy neural network analysis of health-check data. BMC Med Inform Decis Mak. 2012;12:80. doi:10.1186/1472-6947-12-80
  • Wang H, Wang Y, Li X, et al. Machine learning of plasma metabolome identifies biomarker panels for metabolic syndrome: findings from the China Suboptimal Health Cohort. Cardiovasc Diabetol. 2022;21(1):288. doi:10.1186/s12933-022-01716-0
  • Shamrat FM, Chakraborty S, Billah MM, Das P, Ranjan R. A comprehensive study on pre-pruning and post- pruning methods of decision tree classification algorithm. In: 5th International Conference on Trends in Electronics and Informatics (ICOEI 2021); 2021. Available from: http://ieeexplore.ieee.org/document/9452898/.
  • Mcculloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity (reprinted from bulletin of mathematical biophysics, Vol 5, 115–133, 1943). Bull Math Biol. 1990;52(1–2):99–115. doi:10.1016/S0092-8240(05)80006-0
  • Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777–822. doi:10.1210/er.2008-0024
  • Terrin N, Schmid CH, Griffith JL, D’Agostino RB, Selker HP. External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J Clin Epidemiol. 2003;56(8):721–729. doi:10.1016/S0895-4356(03)00120-3
  • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–1231. doi:10.1016/S0895-4356(96)00002-9
  • Do BH, Langlotz C, Beaulieu CF. Bone tumor diagnosis using a naïve bayesian model of demographic and radiographic features. J Digit Imaging. 2017;30(5):640–647. doi:10.1007/s10278-017-0001-7
  • Vrbaski D, Vrbaski M, Kupusinac A, et al. Methods for algorithmic diagnosis of metabolic syndrome. Artif Intell Med. 2019;101. doi:10.1016/j.artmed.2019.101708
  • Worachartcheewan A, Shoombuatong W, Pidetcha P, Nopnithipat W, Prachayasittikul V, Nantasenamat C. Predicting metabolic syndrome using the random forest method. Scientificworldjournal. 2015;2015:581501. doi:10.1155/2015/581501
  • Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Pidetcha P, Prachayasittikul V. Identification of metabolic syndrome using decision tree analysis. Diabetes Res Clin Pract. 2010;90(1):e15–8. doi:10.1016/j.diabres.2010.06.009
  • Lin C, Bai Y, Chen J, et al. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models. J Clin Psychiatry. 2010;71(3):225–234. doi:10.4088/JCP.08m04628yel
  • Wang FH, Lin CM. The utility of artificial neural networks for the non-invasive prediction of metabolic syndrome based on personal characteristics. Int J Environ Res Public Health. 2020;17(24):9288. doi:10.3390/ijerph17249288
  • de Edelenyi F, Goumidi L, Bertrais S, et al. Prediction of the metabolic syndrome status based on dietary and genetic parameters, using random forest. Genes Nutr. 2008;3(3–4):173–176. doi:10.1007/s12263-008-0097-y
  • Kim T, Kim J, Won J, et al. A decision tree-based approach for identifying urban-rural differences in metabolic syndrome risk factors in the adult Korean population. J Endocrinol Invest. 2012;35(9):847–852. doi:10.3275/8235
  • Chan CL, Chen CW, Liu BJ. Discovery of association rules in metabolic syndrome related diseases. In: 2008 Ieee International Joint Conference on Neural Networks. Vol. 1–8. Ieee; 2008:856–862. doi:10.1109/IJCNN.2008.4633898
  • Huang Y. The application of data mining to explore association rules between metabolic syndrome and lifestyles. Health Inform Manage J. 2013;42(3):29–36. doi:10.1177/183335831304200304
  • Kakudi HA, Loo CK, Moy FM, Masuyama N, Pasupa K. Diagnosing metabolic syndrome using genetically optimised Bayesian ARTMAP. IEEE Access. 2019;7:8437–8453. doi:10.1109/ACCESS.2018.2880224