249
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Metabolic and Hepatic Effects of Empagliflozin on Nonalcoholic Fatty Liver Mice

, , , , , , & ORCID Icon show all
Pages 2549-2560 | Received 09 Jun 2023, Accepted 16 Aug 2023, Published online: 24 Aug 2023

References

  • Pan X, Yang L, Wang S, Liu Y, Yue L, Chen S. Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression. Mol Cell Biochem. 2023. doi:10.1007/s11010-023-04784-2
  • Andres-Hernando A, Lanaspa MA, Kuwabara M, et al. Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice. Am J Physiol Renal Physiol. 2019;317(4):F941–F948. doi:10.1152/ajprenal.00203.2019
  • Pan X, Zhang X, Ban J, Yue L, Ren L, Chen S. Effects of high-fat diet on cardiovascular protein expression in mice based on proteomics. Diabetes Metab Syndr Obes. 2023;16:873–882. doi:10.2147/DMSO.S405327
  • Abenavoli L, Greco M, Milic N, et al. Effect of mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: a Randomized Study. Nutrients. 2017;9(8):870. doi:10.3390/nu9080870
  • Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. doi:10.1016/S0140-6736(20)32511-3
  • Djordjevic DB, Zdravkovic M, Nagorni A, Manolis A, Tsioufis C, Lovic D. A critical approach of guideline therapeutic recommendations for NAFLD. Curr Vasc Pharmacol. 2018;16(3):228–238. doi:10.2174/1570161115666170621080228
  • Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic Fatty Liver Disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies. Biomedicines. 2023;11(2):468. doi:10.3390/biomedicines11020468
  • Polyzos SA, Kang ES, Tsochatzis EA, et al. Commentary: nonalcoholic or metabolic dysfunction-associated fatty liver disease? The epidemic of the 21st century in search of the most appropriate name. Metabolism. 2020;113:154413. doi:10.1016/j.metabol.2020.154413
  • Pan X, Yue L, Ren L, Ban J, Chen S. Association of triglyceride-glucose index and liver function parameters among healthy obese civil servants: a Center-Based Study. Diabetes Metab Syndr Obes. 2022;15:3519–3531. doi:10.2147/DMSO.S392544
  • Zhang J, Van Spall HG, Li L, et al. Effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on cardiovascular and kidney outcomes in Asian versus White patients with type 2 diabetes mellitus. Diabetes Metab Syndr. 2023;17(7):102804. doi:10.1016/j.dsx.2023.102804
  • Bica IC, Stoica RA, Salmen T, et al. The effects of sodium-glucose cotransporter 2-inhibitors on steatosis and fibrosis in patients with non-alcoholic fatty liver disease or steatohepatitis and type 2 diabetes: a systematic review of randomized controlled trials. Medicina. 2023;59(6):1136. doi:10.3390/medicina59061136
  • Grubić Rotkvić P, Ćelap I, Bralić Lang V, et al. Impact of SGLT2 inhibitors on the mechanisms of myocardial dysfunction in type 2 diabetes: A prospective non-randomized observational study in patients with type 2 diabetes mellitus without overt heart disease. J Diabetes Complications. 2023;37(8):108541. doi:10.1016/j.jdiacomp.2023.108541
  • Gracen L, Muthukumara W, Aikebuse M, et al. Lower prevalence of elevated liver stiffness measurements in people with type 2 diabetes taking sodium-glucose co-transporter 2 inhibitors or glucagon-like peptide-1 receptor agonists. Ann Hepatol. 2023;28(6):101142. doi:10.1016/j.aohep.2023.101142
  • Shen Y, Cheng L, Xu M, et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657. doi:10.1016/j.metabol.2023.155657
  • Ogawa Y, Nakahara T, Ando Y, et al. Sodium-glucose cotransporter-2 inhibitors improve FibroScan-aspartate aminotransferase scores in patients with nonalcoholic fatty liver disease complicated by type 2 diabetes. Eur J Gastroenterol Hepatol. 2023;35(9):989–996. doi:10.1097/MEG.0000000000002588
  • Jasleen B, Vishal GK, Sameera M, et al. Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors: benefits versus risk. Cureus. 2023;15(1):e33939. doi:10.7759/cureus.33939
  • Kim J, Han K, Kim B, et al. Sodium-glucose cotransporter 2 inhibitors for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus: a nationwide propensity-score matched cohort study. Diabetes Res Clin Pract. 2022;194:110187. doi:10.1016/j.diabres.2022.110187
  • Alshahrani AA, Qahtani SSA, Qahtani ASA, Mashhour SM, Alkhtani ZS, Alragea YM. Metabolic and renal outcomes of empagliflozin in patients with type 2 diabetes mellitus attending Armed Forces Hospital in Saudi Arabia: retrospective cohort study. Saudi Med J. 2023;44(7):674–678. doi:10.15537/smj.2023.44.7.20230094
  • Samkari MM, Bokhari NS, Alhajaji R, et al. Safety and tolerability of Empagliflozin use during the holy month of Ramadan by fasting patients with type 2 diabetes: a prospective cohort study. Saudi Pharm J. 2023;31(6):972–978. doi:10.1016/j.jsps.2023.04.022
  • Prochaska JH, Jünger C, Schulz A, et al. Effects of empagliflozin on left ventricular diastolic function in addition to usual care in individuals with type 2 diabetes mellitus-results from the randomized, double-blind, placebo-controlled EmDia trial. Clin Res Cardiol. 2023;112(7):911–922. doi:10.1007/s00392-023-02164-w
  • Wang L, Zhi Y, Ye Y, et al. Metabolomic analysis identifies the regulation of lipid metabolism pathway as potential mechanisms of Jiangzhi decoction against non-alcoholic fatty liver disease. J Pharm Pharmacol. 2023:rgad067. doi:10.1093/jpp/rgad067
  • Wang Z, Zhou J, Lu M, Liang Y, Jiang Z, Chen K. Therapy of empagliflozin plus metformin on T2DM mice shows no higher amelioration for glucose and lipid metabolism than empagliflozin monotherapy. Life Sci. 2019;232:116622. doi:10.1016/j.lfs.2019.116622
  • Makrecka-Kuka M, Korzh S, Videja M, et al. Empagliflozin protects cardiac mitochondrial fatty acid metabolism in a mouse model of diet-induced lipid overload. Cardiovasc Drugs Ther. 2020;34(6):791–797. doi:10.1007/s10557-020-06989-9
  • Chen X, Ma L, Zhao J, Pan X, Chen S. Effect of empagliflozin on cytoskeletal repair in the hippocampus of obese mice. Front Neurosci. 2022;16:1000839. doi:10.3389/fnins.2022.1000839
  • Pan X, Chen S, Chen X, et al. Effect of high-fat diet and empagliflozin on cardiac proteins in mice. Nutr Metab. 2022;19(1):69. doi:10.1186/s12986-022-00705-0
  • Kluger AY, Tecson KM, Lee AY, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol. 2019;18(1):99. doi:10.1186/s12933-019-0903-4
  • Caturano A, Galiero R, Loffredo G, et al. Effects of a combination of empagliflozin plus metformin vs. metformin monotherapy on NAFLD progression in type 2 diabetes: the IMAGIN Pilot Study. Biomedicines. 2023;11(2):322. doi:10.3390/biomedicines11020322
  • Niu S, Chen S, Chen X, et al. Semaglutide ameliorates metabolism and hepatic outcomes in an NAFLD mouse model. Front Endocrinol. 2022;13:1046130. doi:10.3389/fendo.2022.1046130
  • Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280–295. doi:10.1016/j.jhep.2017.11.014
  • Chalhoub G, Jamnik A, Pajed L, et al. Carboxylesterase 2a deletion provokes hepatic steatosis and insulin resistance in mice involving impaired diacylglycerol and lysophosphatidylcholine catabolism. Mol Metab. 2023;72:101725. doi:10.1016/j.molmet.2023.101725
  • Jiang LP, Sun HZ. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front Endocrinol. 2022;13:1051807. doi:10.3389/fendo.2022.1051807
  • Honda T, Ishigami M, Luo F, et al. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism. 2017;69:177–187. doi:10.1016/j.metabol.2016.12.013
  • Perakakis N, Joshi A, Peradze N, et al. The selective peroxisome proliferator-activated receptor gamma modulator CHS-131 improves liver histopathology and metabolism in a mouse model of obesity and nonalcoholic steatohepatitis. Hepatol Commun. 2020;4(9):1302–1315. doi:10.1002/hep4.1558
  • Kumar DP, Santhekadur PK, Seneshaw M, Mirshahi F, Uram-Tuculescu C, Sanyal AJ. A regulatory role of apoptosis antagonizing transcription factor in the pathogenesis of nonalcoholic fatty liver disease and Hepatocellular Carcinoma. Hepatology. 2019;69(4):1520–1534. doi:10.1002/hep.30346
  • Bei Y, Wu X, Cretoiu D, et al. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell Cardiol. 2018;115:130–141. doi:10.1016/j.yjmcc.2018.01.007
  • Di Gennaro A, Haeggström JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol. 2012;116:51–92. doi:10.1016/B978-0-12-394300-2.00002-8
  • Wang L, Liu X, Nie J, et al. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology. 2015;61(2):486–496. doi:10.1002/hep.27420