192
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Prediction of the Risk of Bone Mineral Density Decrease in Type 2 Diabetes Mellitus Patients Based on Traditional Multivariate Logistic Regression and Machine Learning: A Preliminary Study

, ORCID Icon, &
Pages 2885-2898 | Received 13 Jun 2023, Accepted 05 Sep 2023, Published online: 19 Sep 2023

References

  • Liu H, Wang G, Wu T, Hu J, Mu Y, Gu W. Association of skin autofluorescence with low bone density/osteoporosis and osteoporotic fractures in type 2 diabetes mellitus. J Diabetes. 2022;14(9):571–585. doi:10.1111/1753-0407.13309
  • Li T, Hu L, Yin XL, Zou Y, Fu HY, Li HL. Prevalence and risk factors of osteoporosis in patients with type 2 diabetes mellitus in Nanchang (China): a retrospective cohort study. Diabetes Metab Syndr Obes. 2022;15:3039–3048. doi:10.2147/dmso.S372348
  • Alswat KA. Gender disparities in osteoporosis. J Clin Med Res. 2017;9(5):382–387. doi:10.14740/jocmr2970w
  • Ha J, Jeong C, Han KD, et al. Comparison of fracture risk between type 1 and type 2 diabetes: a comprehensive real-world data. Osteoporos Int. 2021;32(12):2543–2553. doi:10.1007/s00198-021-06032-z
  • Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18(4):427–444. doi:10.1007/s00198-006-0253-4
  • Lee HS, Yoon JS, Park KJ, Lim JS, Hwang JS. The relationship between bone mineral density and type 2 diabetes in obese children and adolescents at the time of initial diagnosis. Horm Metab Res. 2019;51(1):42–46. doi:10.1055/a-0755-2799
  • Li GH, Cheung CL, Tan KC, et al. Development and validation of sex-specific Hip fracture prediction models using electronic health records: a retrospective, population-based cohort study. EClinicalMedicine. 2023;58:101876. doi:10.1016/j.eclinm.2023.101876
  • Dorna Mde S, Costa NA, Oliveira EP, et al. Association between phase angle, anthropometric measurements, and lipid profile in HCV-infected patients. Clinics. 2013;68(12):1555–1558. doi:10.6061/clinics/2013(12)13
  • Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SM, Sellmeyer DE. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. Clin Endocrinol. 2011;74(5):565–571. doi:10.1111/j.1365-2265.2010.03965.x
  • Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y. Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab. 2003;21(1):17–21. doi:10.1007/s007740300003
  • Kang DH, Guo LF, Guo T, et al. Association of body composition with bone mineral density in northern Chinese men by different criteria for obesity. J Endocrinol Invest. 2015;38(3):323–331. doi:10.1007/s40618-014-0167-5
  • Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992;75(3):779–782. doi:10.1210/jcem.75.3.1517366
  • Cui LH, Shin MH, Kweon SS, et al. Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Miner Metab. 2007;25(3):165–171. doi:10.1007/s00774-006-0747-3
  • Mao Y, Xu L, Xue T, et al. Novel nomogram for predicting the 3-year incidence risk of osteoporosis in a Chinese male population. Endocr Connect. 2021;10(9):1111–1124. doi:10.1530/ec-21-0330
  • Shim JG, Kim DW, Ryu KH, et al. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Arch Osteoporos. 2020;15(1):169. doi:10.1007/s11657-020-00802-8
  • Wang C, Zhang T, Wang P, et al. Bone metabolic biomarker-based diagnosis of type 2 diabetes osteoporosis by support vector machine. Ann Transl Med. 2021;9(4):316. doi:10.21037/atm-20-3388
  • Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. machine learning solutions for osteoporosis-a review. J Bone Miner Res. 2021;36(5):833–851. doi:10.1002/jbmr.4292
  • Wu X, Park S. A prediction model for osteoporosis risk using a machine-learning approach and its validation in a large cohort. J Korean Med Sci. 2023;38(21):e162. doi:10.3346/jkms.2023.38.e162
  • Yoo TK, Kim SK, Kim DW, et al. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning. Yonsei Med J. 2013;54(6):1321–1330. doi:10.3349/ymj.2013.54.6.1321
  • Wu X, Zhai F, Chang A, Wei J, Guo Y, Zhang J. Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus. J Endocrinol Invest. 2023. doi:10.1007/s40618-023-02109-0
  • Yosibash Z, Trabelsi N, Buchnik I, et al. Hip fracture risk assessment in elderly and diabetic patients: combining autonomous finite element analysis and machine learning. J Bone Miner Res. 2023;38(6):876–886. doi:10.1002/jbmr.4805
  • Melton LJ. How many women have osteoporosis now? J Bone Miner Res. 1995;10(2):175–177. doi:10.1002/jbmr.5650100202
  • Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37(8):691–697. doi:10.1016/j.injury.2006.04.130
  • American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabet Care. 2020;43(Suppl 1):S14–s31. doi:10.2337/dc20-S002
  • Beaudart C, Bruyère O, Geerinck A, et al. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: a systematic review. Clin Nutr ESPEN. 2020;35:47–62. doi:10.1016/j.clnesp.2019.09.012
  • Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–381. doi:10.1007/bf01622200
  • Ji Y, Geng N, Niu Y, et al. Relationship between geriatric nutritional risk index and osteoporosis in type 2 diabetes in Northern China. BMC Endocr Disord. 2022;22(1):308. doi:10.1186/s12902-022-01215-z
  • Cheraghi Z, Doosti-Irani A, Almasi-Hashiani A, et al. The effect of alcohol on osteoporosis: a systematic review and meta-analysis. Drug Alcohol Depend. 2019;197:197–202. doi:10.1016/j.drugalcdep.2019.01.025
  • Seabra O, Pereira VG, Espindula AP, et al. Even without changing the bone mineral density, alcohol consumption decreases the percentage of collagen, the thickness of bone trabeculae, and increases bone fragility. An Acad Bras Cienc. 2022;94(suppl 3):e20210661. doi:10.1590/0001-3765202220210661
  • Godos J, Giampieri F, Chisari E, et al. Alcohol consumption, bone mineral density, and risk of osteoporotic fractures: a dose-response meta-analysis. Int J Environ Res Public Health. 2022;19(3):1.
  • Shu J, Tan A, Li Y, Huang H, Yang J. The correlation between serum total alkaline phosphatase and bone mineral density in young adults. BMC Musculoskelet Disord. 2022;23(1):467. doi:10.1186/s12891-022-05438-y
  • Kaushal N, Vohora D, Jalali RK, Jha S. Review of the literature examining the association of serum uric acid with osteoporosis and mechanistic insights into its effect on bone metabolism. Endocr Metab Immune Disord Drug Targets. 2019;19(3):259–273. doi:10.2174/1871530318666181102115106
  • Hyassat D, Alyan T, Jaddou H, Ajlouni KM. Prevalence and risk factors of osteoporosis among Jordanian postmenopausal women attending the national center for diabetes, endocrinology and genetics in Jordan. Biores Open Access. 2017;6(1):85–93. doi:10.1089/biores.2016.0045
  • Kirk B, Feehan J, Lombardi G, Muscle DG. Bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388–400. doi:10.1007/s11914-020-00599-y
  • Scariano JK, Glew RH, Bou-Serhal CE, Clemens JD, Garry PJ, Baumgartner RN. Serum levels of cross-linked N-telopeptides and aminoterminal propeptides of type I collagen indicate low bone mineral density in elderly women. Bone. 1998;23(5):471–477. doi:10.1016/s8756-3282(98)00126-4
  • Li Y, Huang Z, Gong Y, Zheng Y, Zeng Q. Retrospective analysis of the relationship between bone mineral density and body composition in a health check-up Chinese population. Front Endocrinol. 2022;13:965758. doi:10.3389/fendo.2022.965758
  • Whitfield JB, Heath AC, Madden PA, Pergadia ML, Montgomery GW, Martin NG. Metabolic and biochemical effects of low-to-moderate alcohol consumption. Alcohol Clin Exp Res. 2013;37(4):575–586. doi:10.1111/acer.12015
  • Whitfield JB, Hensley WJ, Bryden D, Gallagher H. Some laboratory correlates of drinking habits. Ann Clin Biochem. 1978;15(6):297–303. doi:10.1177/000456327801500171
  • Manolagas SC, O’brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9(12):699–712. doi:10.1038/nrendo.2013.179
  • Pan Y, Xu J. Association between muscle mass, bone mineral density and osteoporosis in type 2 diabetes. J Diabetes Investig. 2022;13(2):351–358. doi:10.1111/jdi.13642
  • Prakash KO, Choudhary R, Singh G. Lean body mass, body fat percentage, and handgrip strength as predictors of bone mineral density in postmenopausal women. J Midlife Health. 2021;12(4):299–303. doi:10.4103/jmh.jmh_21_21
  • Casale M, von Hurst PR, Beck KL, et al. Lean mass and body fat percentage are contradictory predictors of bone mineral density in pre-menopausal pacific island women. Nutrients. 2016;8(8). doi:10.3390/nu8080470
  • Jang HC. Diabetes and muscle dysfunction in older adults. Ann Geriatr Med Res. 2019;23(4):160–164. doi:10.4235/agmr.19.0038
  • Hirata K, Iida N, Kanda A, et al. Association of age-related decrease in intracellular-to-total water ratio with that in explosive strength of the plantar flexors: a cross-sectional study. J Physiol Anthropol. 2022;41(1):10. doi:10.1186/s40101-022-00284-2
  • Yamada Y, Matsuda K, Björkman MP, Kimura M. Application of segmental bioelectrical impedance spectroscopy to the assessment of skeletal muscle cell mass in elderly men. Geriatr Gerontol Int. 2014;14 Suppl 1:129–134. doi:10.1111/ggi.12212
  • Yoshida T, Yamada Y, Tanaka F, Yamagishi T, Shibata S, Kawakami Y. Intracellular-to-total water ratio explains the variability of muscle strength dependence on the size of the lower leg in the elderly. Exp Gerontol. 2018;113:120–127. doi:10.1016/j.exger.2018.09.022
  • Silva AM, Matias CN, Santos DA, Rocha PM, Minderico CS, Sardinha LB. Increases in intracellular water explain strength and power improvements over a season. Int J Sports Med. 2014;35(13):1101–1105. doi:10.1055/s-0034-1371839
  • Xu X, Xu N, Wang Y, et al. The longitudinal associations between bone mineral density and appendicular skeletal muscle mass in Chinese community-dwelling middle aged and elderly men. PeerJ. 2021;9:e10753. doi:10.7717/peerj.10753
  • Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery. 2011;149(1):87–93. doi:10.1016/j.surg.2010.03.023