97
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Amplitude of Low-Frequency Fluctuation to Determine Disturbed Spontaneous Brain-Activity Pattern in Patients with Diabetic Optic Neuropathy

ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 2899-2909 | Received 16 Jun 2023, Accepted 07 Sep 2023, Published online: 20 Sep 2023

References

  • Hosseini Z, Whiting SJ, Vatanparast H. Type 2 diabetes prevalence among Canadian adults - dietary habits and sociodemographic risk factors. Appl Physiol Nutr Metab. 2019;44(10):1099–1104. doi:10.1139/apnm-2018-0567
  • Shin JY. Trends in the prevalence and management of diabetes in Korea: 2007–2017. Epidemiol Health. 2019;41:e2019029. doi:10.4178/epih.e2019029
  • Pradeepa R, Mohan V. Prevalence of type 2 diabetes and its complications in India and economic costs to the nation. Eur J Clin Nutr. 2017;71(7):816–824. doi:10.1038/ejcn.2017.40
  • Giuliari GP, Sadaka A, Y. Chang P, et al. Diabetic papillopathy: current and new treatment options. Curr Diabetes Rev. 2011;7(3):171–175. doi:10.2174/157339911795843122
  • Hua R, Qu L, Ma B, et al. Diabetic optic neuropathy and its risk factors in Chinese patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60(10):3514–3519. doi:10.1167/iovs.19-26825
  • BELL LG. Diabetic optic neuropathy. Trans Ophthalmol Soc N Z. 1956–1957;9:25–30. PMID: 13496160.
  • Moro F, Doro D. Diabetic optic neuropathies: clinical features. Metab Pediatr Syst Ophthalmol. 1986;9(2–4):65–70.
  • Biswal BB. Resting state fMRI: a personal history. Neuroimage. 2012;62(2):938–944. doi:10.1016/j.neuroimage.2012.01.090
  • Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol. 2018;39(8):1390–1399. PMID: 29348136; PMCID: PMC6051935. doi:10.3174/ajnr.A5527
  • Li T, Liu Z, Li J, et al. Altered amplitude of low-frequency fluctuation in primary open-angle glaucoma: a resting-state FMRI study. Invest Ophthalmol Vis Sci. 2014;56(1):322–329. doi:10.1167/iovs.14-14974
  • Huang X, Zhong Y-L, Zeng X-J, et al. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study. Neuropsychiatr Dis Treat. 2015;11:1877–1883. doi:10.2147/NDT.S87596
  • Peng ZY, Liu Y-X, Li B, et al. Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: a functional magnetic resonance imaging study. Brain Behav. 2021;11(3):e02018. doi:10.1002/brb3.2018
  • Huang X, Zhou F-Q, Hu Y-X, et al. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2016;12:2949–2956. doi:10.2147/NDT.S118326
  • Min YL, Su T, Shu Y-Q, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2018;14:2351–2359. doi:10.2147/NDT.S171462
  • Tan G, Huang X, Zhang Y, et al. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. Neuropsychiatr Dis Treat. 2016;12:1243–1250. doi:10.2147/NDT.S104756
  • Huang X, Cai F-Q, Hu P-H, et al. Disturbed spontaneous brain-activity pattern in patients with optic neuritis using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2015;11:3075–3083. doi:10.2147/NDT.S92497
  • Tan G, Tan G, Huang X, et al. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2016;12:2015–2020. doi:10.2147/NDT.S110539
  • Li Q, Huang X, Ye L, et al. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study. Clin Interv Aging. 2016;11:1773–1780. doi:10.2147/CIA.S117292
  • Pan ZM, Li H-J, Bao J, et al. Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2018;14:251–257. doi:10.2147/NDT.S150051
  • Kang HH, Shu Y-Q, Yang L, et al. Measuring abnormal intrinsic brain activities in patients with retinal detachment using amplitude of low-frequency fluctuation: a resting-state fMRI study. Int J Neurosci. 2019;129(7):681–686. doi:10.1080/00207454.2018.1554657
  • Qi CX, Huang X, Shen Y. Altered intrinsic brain activities in patients with diabetic retinopathy using amplitude of low-frequency fluctuation: a resting-state fMRI study. Diabetes Metab Syndr Obes. 2020;13:2833–2842. doi:10.2147/DMSO.S259476
  • Shi WQ, Tang L, Lin Q, et al. Altered spontaneous brain activity patterns in diabetic patients with vitreous hemorrhage using amplitude of low‑frequency fluctuation: a resting‑state fMRI study. Mol Med Rep. 2020;22(3):2291–2299. doi:10.3892/mmr.2020.11294
  • Wu YY, Yuan Q, Li B, et al. Altered spontaneous brain activity patterns in patients with retinal vein occlusion indicated by the amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Exp Ther Med. 2019;18(3):2063–2071. PMID: 31410162; PMCID: PMC6676080. doi:10.3892/etm.2019.7770
  • Jiang YP, Liu WF, Pan YC, et al. The abnormal fractional amplitude of low-frequency fluctuation changes in patients with diabetic optic neuropathy: a steady-state fMRI study. J Integr Neurosci. 2021;20(4):885–893. PMID: 34997712. doi:10.31083/j.jin2004090
  • Kuo HK, Kuo MT, Tiong IS, Wu PC, Chen YJ, Chen CH. Visual acuity as measured with Landolt C chart and Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):601–605. PMID: 20658145. doi:10.1007/s00417-010-1461-3
  • Firan AM, Istrate S, Iancu R, Tudosescu R, Ciuluvică R, Voinea L. Visual evoked potential in the early diagnosis of glaucoma. Literature review. Rom J Ophthalmol. 2020;64(1):15–20. PMID: 32292852; PMCID: PMC7141918. doi:10.22336/rjo.2020.4
  • Park SH, Goo JM, Jo CH. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5(1):11–18. PMID: 15064554; PMCID: PMC2698108. doi:10.3348/kjr.2004.5.1.11
  • Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–390. doi:10.1038/s41581-020-0278-5
  • van Duinkerken E, Schoonheim MM, Sanz-Arigita EJ, et al. Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes. 2012;61(7):1814–1821. doi:10.2337/db11-1358
  • Zhang C, Guo Y, Slater BJ, et al. Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION). Exp Eye Res. 2010;91(2):286–292. doi:10.1016/j.exer.2010.05.021
  • Xu QH, Li Q-Y, Yu K, et al. Altered brain network centrality in patients with diabetic optic neuropathy: a resting-state fMRI study. Endocr Pract. 2020;26(12):1399–1405. doi:10.4158/EP-2020-0045
  • Sebastian R, Gomez Y, Leigh R, et al. The roles of occipitotemporal cortex in reading, spelling, and naming. Cogn Neuropsychol. 2014;31(5–6):511–528. doi:10.1080/02643294.2014.884060
  • Weiner KS, Zilles K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia. 2016;83:48–62. doi:10.1016/j.neuropsychologia.2015.06.033
  • Gao Q, Peng B, Huang X, et al. Assessment of cerebral low-frequency oscillations in patients with retinal vein occlusion: a preliminary functional MRI study. Acta Radiol. 2020;61(6):813–820. doi:10.1177/0284185119879683
  • Shao Y, Cai F, Zhong Y, et al. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2015;11:3065–3073. doi:10.2147/NDT.S92968
  • Li J, Zhang W, Wang X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS One. 2018;13(1):e0190699. doi:10.1371/journal.pone.0190699
  • Wang ZL, Zou L, Lu Z-W, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study. Clin Radiol. 2017;72(4):340.e1–340.e7. doi:10.1016/j.crad.2016.11.012
  • Friederici AD. The brain basis of language processing: from structure to function. Physiol Rev. 2011;91(4):1357–1392. doi:10.1152/physrev.00006.2011
  • Du J, Rolls ET, Cheng W, et al. Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans. Cortex. 2020;123:185–199. doi:10.1016/j.cortex.2019.10.012
  • Yu YJ, Liang R-B, Yang Q-C, et al. Altered spontaneous brain activity patterns in patients after lasik surgery using amplitude of low-frequency fluctuation: a resting-state functional MRI study. Neuropsychiatr Dis Treat. 2020;16:1907–1917. doi:10.2147/NDT.S252850
  • Wang F, Liu Y, Li J, et al. Abnormal brain function in neuromyelitis optica: a fMRI investigation of mPASAT. Eur J Radiol. 2017;95:197–201. doi:10.1016/j.ejrad.2017.08.012
  • Yang L, Xiao A, Li QY, et al. Hyperintensities of middle frontal gyrus in patients with diabetic optic neuropathy: a dynamic amplitude of low-frequency fluctuation study. Aging. 2022;14(3):1336–1350. doi:10.18632/aging.203877
  • Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191–218.
  • Dixon ML, Thiruchselvam R, Todd R, et al. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143(10):1033–1081. doi:10.1037/bul0000096
  • Ridderinkhof KR, Ullsperger M, Crone EA, et al. The role of the medial frontal cortex in cognitive control. Science. 2004;306(5695):443–447. doi:10.1126/science.1100301
  • Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268–277. doi:10.1038/nrn1884
  • Wang Y, Shao Y, Shi WQ, et al. The predictive potential of altered spontaneous brain activity patterns in diabetic retinopathy and nephropathy. EPMA J. 2019;10(3):249–259. doi:10.1007/s13167-019-00171-4
  • Wan KH, Chen LJ, Young AL. Depression and anxiety in dry eye disease: a systematic review and meta-analysis. Eye. 2016;30(12):1558–1567. PMID: 27518547; PMCID: PMC5177754. doi:10.1038/eye.2016.186