138
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multi-Tiered Assessment of Gene Expression Provides Evidence for Mechanisms That Underlie Risk for Type 2 Diabetes

, ORCID Icon, ORCID Icon, , , & show all
Pages 3445-3457 | Received 02 Aug 2023, Accepted 25 Oct 2023, Published online: 31 Oct 2023

References

  • National Diabetes Statistics Report. 2017, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services: Atlanta, GA.
  • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–753. doi:10.1038/nature08494
  • Xue A, Wu Y, Zhu Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941. doi:10.1038/s41467-018-04951-w
  • Bagchi D. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome. 2 ed. Waltham, MA: Elsevier. pages cm; 2018.
  • Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. doi:10.1016/S2213-8587(18)30051-2
  • Zou X, Zhou X, Zhu Z, et al. Novel subgroups of patients with adult-onset diabetes in Chinese and US populations. Lancet Diabetes Endocrinol. 2019;7(1):9–11. doi:10.1016/S2213-8587(18)30316-4
  • Anjana RM, Baskar V, Nair ATN, et al. Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study. BMJ Open Diabetes Res Care. 2020;8(1):e001506. doi:10.1136/bmjdrc-2020-001506
  • Herder C, Maalmi H, Strassburger K, et al. Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes. 2021;70(5):1198–1208. doi:10.2337/db20-1054
  • Hill-Briggs F, Adler NE, Berkowitz SA, et al. Social determinants of health and diabetes: a scientific review. Diabetes Care. 2020;44:258–279. doi:10.2337/dci20-0053
  • Shao H, Zhang Y, Liu Y, et al. Establishment and verification of a gene signature for diagnosing type 2 diabetics by WGCNA, LASSO analysis, and in vitro experiments. Biomed Res Int. 2022;2022:4446342. doi:10.1155/2022/4446342
  • Kanaya AM, Araneta MRG, Pawlowsky SB, et al. Restorative yoga and metabolic risk factors: the practicing restorative yoga vs. stretching for the metabolic syndrome (PRYSMS) randomized trial. J Diabetes Complications. 2014;28(3):406–412. doi:10.1016/j.jdiacomp.2013.12.001
  • Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and international association for the Study of Obesity. Circulation. 2009;120(16):1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644
  • Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. doi:10.1093/clinchem/18.6.499
  • Flowers E, Kanaya AM, Fukuoka Y, et al. Preliminary evidence supports circulating microRNAs as prognostic biomarkers for type 2 diabetes. Obes Sci Pract. 2017;3(4):446–452. doi:10.1002/osp4.134
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Society. 1995;57(1):289–300.
  • Yan S, Yao N, Li X, et al. The association between the differential expression of lncRNA and type 2 diabetes mellitus in people with hypertriglyceridemia. Int J Mol Sci. 2023;24(5):56.
  • Berry NT, Hubal M, Wideman L. The effects of an acute exercise bout on GH and IGF-1 in prediabetic and healthy African Americans: a pilot study investigating gene expression. PLoS One. 2018;13(1):e0191331. doi:10.1371/journal.pone.0191331
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi:10.1093/nar/gkaa1074
  • Maiuolo J, Gliozzi M, Musolino V, et al. From metabolic syndrome to neurological diseases: role of autophagy. Front Cell Dev Biol. 2021;9:651021. doi:10.3389/fcell.2021.651021
  • Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20(10):1110–1117. doi:10.1038/s41556-018-0201-5
  • Zhu Z, Yu R, Yang C, et al. Stress-related hormone reduces autophagy through the regulation of phosphatidylethanolamine in breast cancer cells. Ann Transl Med. 2021;9(2):149. doi:10.21037/atm-20-8176
  • Farrer LA. Diabetes mellitus in Huntington disease. Clin Genet. 1985;27(1):62–67. doi:10.1111/j.1399-0004.1985.tb00185.x
  • Hassan A, Sharma Kandel R, Mishra R, et al. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus. 2020;12(8):e9853. doi:10.7759/cureus.9853
  • Vasta R, D’Ovidio F, Logroscino G, et al. The links between diabetes mellitus and amyotrophic lateral sclerosis. Neurol Sci. 2021;42(4):1377–1387. doi:10.1007/s10072-021-05099-0
  • Mukherjee A, Soto C. Prion-like protein aggregates and type 2 diabetes. Cold Spring Harb Perspect Med. 2017;7(5):a024315. doi:10.1101/cshperspect.a024315
  • Sigurdson CJ, Bartz JC, Glatzel M. Cellular and molecular mechanisms of prion disease. Annu Rev Pathol. 2019;14(1):497–516. doi:10.1146/annurev-pathmechdis-012418-013109
  • Blencowe M, Furterer A, Wang Q, et al. IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 diabetes. Diabetologia. 2022;65(1):173–187. doi:10.1007/s00125-021-05569-2
  • Nie T, Zhang S, Vazhoor Amarsingh G, et al. Altered metabolic gene expression in the brain of a triprolyl-human amylin transgenic mouse model of type 2 diabetes. Sci Rep. 2019;9(1):14588. doi:10.1038/s41598-019-51088-x
  • Xu L, Li Y, Yin L, et al. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics. 2018;8(20):5593–5609. doi:10.7150/thno.27425
  • Bensellam M, Jonas JC, Laybutt DR. Mechanisms of beta-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol. 2018;236(2):R109–R143. doi:10.1530/JOE-17-0516
  • Ding J, Reynolds LM, Zeller T, et al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related type 2 diabetes and cardiovascular disease. Diabetes. 2015;64(10):3464–3474. doi:10.2337/db14-1314
  • Diamanti K, Cavalli M, Pereira MJ, et al. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med. 2022;3(10):100763. doi:10.1016/j.xcrm.2022.100763
  • Penke B, Fulop L, Szucs M, et al. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr Neuropharmacol. 2018;16(1):97–116. doi:10.2174/1570159X15666170529104323
  • Flowers E, et al. Coexpressed microRNAs, target genes and pathways related to metabolism, inflammation and endocrine function in individuals at risk for type 2 diabetes. Mol Med Rep. 2022;25(5). doi:10.3892/mmr.2022.12672
  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.
  • Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14(1):50–59. doi:10.15420/ecr.2018.33.1
  • Zafar U, Khaliq S, Ali Z, et al. TCF7-L2 rs7903146 polymorphism in metabolic syndrome with and without acute coronary syndrome. J Pak Med Assoc. 2020;70(10):1774–1778. doi:10.5455/JPMA.45480
  • Flowers E, Kanaya AM, Zhang L, et al. The role of racial and ethnic factors in microRNA expression and risk for type 2 diabetes. Front Genet. 2022;13:853633. doi:10.3389/fgene.2022.853633