140
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Oxymatrine Alleviates High-Fat-High-Fructose-Induced Fatty Liver in Rats: Understanding the Molecular Mechanism Through an Untargeted Metabonomics Study

, , ORCID Icon, , , , , & show all
Pages 4013-4024 | Received 01 Aug 2023, Accepted 22 Nov 2023, Published online: 07 Dec 2023

References

  • Pan J, Zhou W, Xu R, Xing L, Ji G, Dang Y. Natural PPARs agonists for the treatment of nonalcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113127. doi: 10.1016/j.biopha.2022.113127
  • Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol. 2017;91(4):1545–1563. doi: 10.1007/s00204-016-1892-7
  • Longato L. Non-alcoholic fatty liver disease (NAFLD): a tale of fat and sugar? Fibrogenesis Tissue Repair. 2013;6(1):14. doi: 10.1186/1755-1536-6-14
  • Kamboj P, Sarkar S, Gupta SK, Bisht N, Kumari D, Alam MJ. Methanolic extract of Lysimachia Candida Lindl. Prevents high-fat high-fructose-induced fatty liver in rats: understanding the molecular mechanism through untargeted metabolomics study. Front Pharmacol. 2021;12:653872. doi: 10.3389/fphar.2021.653872
  • Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM. Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr. 2018;10:4. doi: 10.1186/s13098-018-0307-8
  • Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–350. doi: 10.1146/annurev-pathol-020117-043617
  • Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. doi: 10.1016/j.metabol.2015.12.012
  • Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab. 2021;50:101122.
  • Hua S, Gu M, Wang Y, Ban D, Ji H. Oxymatrine reduces expression of programmed death-ligand 1 by promoting DNA demethylation in colorectal cancer cells. Clin Transl Oncol. 2021;23(4):750–756. doi: 10.1007/s12094-020-02464-x
  • Zhu YX, Hu HQ, Zuo ML, Mao L, Song GL, Li TM. Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation. Biomed Rep. 2021;15(1):56. doi: 10.3892/br.2021.1432
  • Huan DQ, Hop NQ, Son NT. Oxymatrine: a current overview of its health benefits. Fitoterapia. 2023;168:105565. doi: 10.1016/j.fitote.2023.105565
  • Shi LJ, Shi L, Song GY, Zhang HF, Hu ZJ, Wang C. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparalpha). Eur J Pharmacol. 2013;714(1–3):89–95. doi: 10.1016/j.ejphar.2013.06.013
  • Son JW, Shoaie S, Lee S. Systems biology: a multi-omics integration approach to metabolism and the microbiome. Endocrinol Metab (Seoul). 2020;35(3):507–514. doi: 10.3803/EnM.2020.303
  • Xie Z, Li H, Wang K, Lin J, Wang Q, Zhao G. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metabolism. 2010;59(4):554–560. doi: 10.1016/j.metabol.2009.08.022
  • Hansen M, Baunsgaard D, Autrup H, Vogel UB, Moller P, Lindecrona R. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolome. Food Chem Toxicol. 2008;46(2):752–760. doi: 10.1016/j.fct.2007.09.110
  • Abd ES, El-Den AE. Non-alcoholic fatty liver disease: the diagnosis and management. World J Hepatol. 2015;7(6):846–858. doi: 10.4254/wjh.v7.i6.846
  • Wang Y, Wu J, Shi A. Literature review on the use of herbal extracts in the treatment of non- alcoholic fatty liver disease. Endocr Metab Immune Disord Drug Targets. 2022;22(11):1123–1145. doi: 10.2174/1871530322666220408123746
  • Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci. 2020;257:118090. doi: 10.1016/j.lfs.2020.118090
  • Muller C, Hank E, Giera M, Bracher F. Dehydrocholesterol reductase 24 (DHCR24): medicinal chemistry, pharmacology and novel therapeutic options. Curr Med Chem. 2022;29(23):4005–4025. doi:10.2174/0929867328666211115121832
  • Simonen M, Mannisto V, Leppanen J, Kaminska D, Karja V, Venesmaa S. Desmosterol in human nonalcoholic steatohepatitis. Hepatology. 2013;58(3):976–982. doi: 10.1002/hep.26342
  • Hirotani Y, Ozaki N, Tsuji Y, Urashima Y, Myotoku M. Effects of eicosapentaenoic acid on hepatic dyslipidemia and oxidative stress in high fat diet-induced steatosis. Int J Food Sci Nutr. 2015;66(5):569–573. doi: 10.3109/09637486.2015.1042848
  • Bhat SF, Pinney SE, Kennedy KM, McCourt CR, Mundy MA, Surette MG. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner. J Physiol. 2021;599(5):1487–1511. doi: 10.1113/JP280034
  • Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47(3):603–615. doi: 10.1007/s00726-014-1894-9
  • Demirel M, Koktasoglu F, Ozkan E, Dulun AH, Gul AZ, Sharifov R. Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease. Scand J Gastroenterol. 2023;58(11):1344–1350. doi: 10.1080/00365521.2023.2225667
  • Amanatidou AI, Mikropoulou EV, Amerikanou C, Milanovic M, Stojanoski S, Bjelan M. Plasma amino acids in NAFLD patients with obesity are associated with steatosis and fibrosis: results from the MAST4HEALTH study. Metabolites. 2023;13:8. doi:10.3390/metabo13080959
  • Gagnon E, Manikpurage HD, Mitchell PL, Girard A, Gobeil E, Bourgault J. Large-scale metabolomic profiling and incident non-alcoholic fatty liver disease. iScience. 2023;26(7):107127. doi: 10.1016/j.isci.2023.107127
  • Zhang D, Zheng W, Li X, Liang G, Ye N, Liu Y. Investigation of obesity-alleviation effect of eurycoma longifolia on mice fed with a high-fat diet through metabolomics revealed enhanced decomposition and inhibition of accumulation of lipids. J Proteome Res. 2021;20(5):2714–2724. doi: 10.1021/acs.jproteome.1c00015
  • Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci. 2018;19(11):3285. doi: 10.3390/ijms19113285
  • Wang L, Zhi Y, Ye Y, Zhang M, Mai Z, Xia W. Metabolomic analysis identifies the regulation of lipid metabolism pathway as potential mechanisms of Jiangzhi decoction against non-alcoholic fatty liver disease. J Pharm Pharmacol. 2023;75(10):1366–1377. doi: 10.1093/jpp/rgad067
  • Sztolsztener K, Chabowski A, Harasim-Symbor E, Bielawiec P, Konstantynowicz-Nowicka K. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development. Biomolecules. 2020;10:8. doi: 10.3390/biom10081133
  • Chashmniam S, Mirhafez SR, Dehabeh M, Hariri M, Azimi NM, Nobakht MGB. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr. 2019;73(9):1224–1235. doi: 10.1038/s41430-018-0386-5
  • Muyyarikkandy MS, McLeod M, Maguire M, Mahar R, Kattapuram N, Zhang C. Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD. FASEB J. 2020;34(11):14832–14849. doi: 10.1096/fj.202001495R
  • Papadopoulos G, Legaki AI, Georgila K, Vorkas P, Giannousi E, Stamatakis G. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism. 2023;144:155552. doi: 10.1016/j.metabol.2023.155552
  • Sun R, Xu D, Wei Q, Zhang B, Aa J, Wang G. Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model. Biomed Pharmacother. 2020;123:109721. doi: 10.1016/j.biopha.2019.109721
  • Fotakis C, Kalafati IP, Amanatidou AI, Andreou V, Matzapetakis M, Kafyra M. Serum metabolomic profiling unveils distinct sex-related metabolic patterns in NAFLD. Front Endocrinol (Lausanne). 2023;14:1230457. doi: 10.3389/fendo.2023.1230457
  • Yang JH, Byeon EH, Kang D, Hong SG, Yang J, Kim DR. Fermented soybean paste attenuates biogenic amine-induced liver damage in obese mice. Cells. 2023;12:5. doi: 10.3390/cells12050822
  • Yamada S, Tanimoto A, Sasaguri Y. Critical in vivo roles of histamine and histamine receptor signaling in animal models of metabolic syndrome. Pathol Int. 2016;66(12):661–671. doi: 10.1111/pin.12477
  • Yamada S, Guo X, Wang KY, Tanimoto A, Sasaguri Y. Novel function of histamine signaling via histamine receptors in cholesterol and bile acid metabolism: histamine H2 receptor protects against nonalcoholic fatty liver disease. Pathol Int. 2016;66(7):376–385. doi: 10.1111/pin.12423
  • Toledo-Ibelles P, Gutierrez-Vidal R, Calixto-Tlacomulco S, Delgado-Coello B, Mas-Oliva J. Hepatic accumulation of hypoxanthine: a link between hyperuricemia and nonalcoholic fatty liver disease. Arch Med Res. 2021;52(7):692–702. doi: 10.1016/j.arcmed.2021.04.005
  • Hegazy M, Elsayed NM, Ali HM, Hassan HG, Rashed L. Diabetes mellitus, nonalcoholic fatty liver disease, and conjugated linoleic acid (Omega 6): what is the link? J Diabetes Res. 2019;2019:5267025. doi: 10.1155/2019/5267025
  • Pertiwi K, Kupers LK, Geleijnse JM, Zock PL, Wanders AJ, Kruger HS. Associations of linoleic acid with markers of glucose metabolism and liver function in South African adults. Lipids Health Dis. 2020;19(1):138. doi: 10.1186/s12944-020-01318-3
  • Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat. 2016;125:90–99. doi: 10.1016/j.prostaglandins.2016.06.003
  • Marangoni F, Agostoni C, Borghi C, Catapano AL, Cena H, Ghiselli A. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis. 2020;292:90–98. doi: 10.1016/j.atherosclerosis.2019.11.018
  • Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H. PPAR-gamma signaling in nonalcoholic fatty liver disease: pathogenesis and therapeutic targets. Pharmacol Ther. 2023;245:108391. doi: 10.1016/j.pharmthera.2023.108391