142
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Trapa Bispinosa Roxb. Inhibits the Insulin-Dependent AKT/WNK1 Pathway to Induce Autophagy in Mice with Type 2 Diabetes

ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 3095-3104 | Received 13 Jul 2023, Accepted 04 Oct 2023, Published online: 05 Oct 2023

References

  • Zhang AMY, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes Metab J. 2021;45(3):285–311. doi:10.4093/dmj.2020.0250
  • Kloska SM, Pałczyński K, Marciniak T, et al. Queueing theory model of mTOR complexes’ impact on Akt-mediated adipocytes response to insulin. PLoS One. 2022;17:e0279573. doi:10.1371/journal.pone.0279573
  • Sakai S, Yamamoto T, Takabatake Y, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes. J Am Soc Nephrol. 2019;30:929–945. doi:10.1681/asn.2018100983
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–136. doi:10.1016/s0140-6736(09)62124-3
  • Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy. 2022;18:320–339. doi:10.1080/15548627.2021.1926655
  • Okutsu M, Yamada M, Tokizawa K, et al. Regular exercise stimulates endothelium autophagy via IL-1 signaling in ApoE deficient mice. FASEB J. 2021;35:e21698. doi:10.1096/fj.202002790rr
  • Kitts DD. Antioxidant and functional activities of MRPs derived from different sugar–amino acid combinations and reaction conditions. Antioxidants. 2021;10:1840. doi:10.3390/antiox10111840
  • Tian Z, Chen S, Shi Y, Wang P, Wu Y, Li G. Dietary advanced glycation end products (dAGEs): an insight between modern diet and health. Food Chem. 2023;415:135735. doi:10.1016/j.foodchem.2023.135735
  • Zawada A, Machowiak A, Rychter AM, et al. Accumulation of advanced glycation end-products in the body and dietary habits. Nutrients. 2022;14:3982. doi:10.3390/nu14193982
  • Song Q, Liu J, Dong L, Wang X, Zhang X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed Pharmacother. 2021;140:111750. doi:10.1016/j.biopha.2021.111750
  • Tao D, Ni N, Zhang T, et al. Accumulation of advanced glycation end products potentiate human retinal capillary endothelial cells mediated diabetic retinopathy. Mol Med Rep. 2019;20:3719–3727. doi:10.3892/mmr.2019.10590
  • Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina. Int J Mol Sci. 2023;24:2927. doi:10.3390/ijms24032927
  • Adkar P, Dongare A, Ambavade S, Bhaskar VH. Trapa bispinosa Roxb.: a review on nutritional and pharmacological aspects. Adv Pharmacol Sci. 2014;2014:959830. doi:10.1155/2014/959830
  • Ban I, Sugawa H, Nagai R. Protein modification with ribose generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine. Int J Mol Sci. 2022;23:1224. doi:10.3390/ijms23031224
  • Hussain T, Subaiea GM, Firdous H. Hepatoprotective evaluation of trapa natans against drug-induced hepatotoxicity of antitubercular agents in rats. Pharmacogn Mag. 2018;14:180–185.
  • Takeshita S, Yagi M, Uemura T, Yamada M, Yonei Y. Peel extract of water chestnut (Trapa bispinosa Roxb.) inhibits glycation, degrades α-dicarbonyl compound, and breaks advanced glycation end product crosslinks. Glycative Stress Res. 2015;2:72–79. doi:10.24659/gsr.2.2_072
  • Uemura T, Takeshita S, Yamada M. The effectiveness of the peel extract of water chestnut (Trapa bispinosa Roxb.) in an α-crystallin glycation model with glyoxal. Glycative Stress Res. 2017;4:104–108. doi:10.24659/gsr.4.2_104
  • Kinoshita S, Sugawa H, Nanri T, et al. Trapa bispinosa Roxb. and lutein ameliorate cataract in type 1 diabetic rats. J Clin Biochem Nutr. 2020;66:8–14. doi:10.3164/jcbn.19-34
  • Hanaguri J, Yokota H, Kushiyama A, et al. Beneficial effect of long-term administration of supplement with Trapa bispinosa Roxb. and lutein on retinal neurovascular coupling in type 2 diabetic mice. Front Physiol. 2022;13:788034. doi:10.3389/fphys.2022.788034
  • Ambikar DB, Harle UN, Khandare RA, Bore VV, Vyawahare NS. Neuroprotective effect of hydroalcoholic extract of dried fruits of Trapa bispinosa Roxb on lipofuscinogenesis and fluorescence product in brain of D-galactose induced ageing accelerated mice. Indian J Exp Biol. 2010;48:378–382. PMID: 20726336.
  • Kang Q, Dai H, Jiang S, Yu L. Advanced glycation end products in diabetic retinopathy and phytochemical therapy. Front Nutr. 2022;9:1037186. doi:10.3389/fnut.2022.1037186
  • Yamamoto Y, Kato I, Doi T, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest. 2001;108:261–268. doi:10.1172/jci11771
  • Jinno M, Nagai R, Takeuchi M, et al. Trapa bispinosa Roxb. extract lowers advanced glycation end-products and increases live births in older patients with assisted reproductive technology: a randomized controlled trial. Reprod Biol Endocrinol. 2021;19:149. doi:10.1186/s12958-021-00832-y
  • Iwaoka Y, Suzuki S, Kato N, et al. Characterization and identification of bioactive polyphenols in the Trapa bispinosa Roxb. pericarp extract. Molecules. 2021;26:5802.
  • Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell. 2013;154:365–376. doi:10.1016/j.cell.2013.06.012
  • Sethna S, Scott PA, Giese APJ, et al. CIB2 regulates mTORC1 signaling and is essential for autophagy and visual function. Nat Commun. 2021;23:3906. doi:10.1038/s41467-021-24056-1
  • Chen Q, Tang L, Xin G, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med. 2019;130:48–58. doi:10.1016/j.freeradbiomed.2018.10.419
  • Takahashi A, Takabatake Y, Kimura T, et al. Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes. 2017;66:1359–1372. doi:10.2337/db16-0397
  • Lindström P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J. 2007;7:666–685. doi:10.1100/tsw.2007.117
  • Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:131. doi:10.1172/jci142241
  • An SW, Cha SK, Yoon J, Chang S, Ross EM, Huang CL. WNK1 promotes PIP2 synthesis to coordinate growth factor and GPCR-Gq signaling. Curr Biol. 2011;21:1979–1987. doi:10.1016/j.cub.2011.11.002
  • Gallolu Kankanamalage S, Lee AY, Wichaidit C, et al. WNK1 is an unexpected autophagy inhibitor. Autophagy. 2017;13:969–970. doi:10.1080/15548627.2017.1286431
  • Sahashi H, Kato A, Yoshida M, et al. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front Oncol. 2022;12:963314. doi:10.3389/fonc.2022.963314
  • Gaya P, Peirotén Á, Medina M, Álvarez I, Landete JM. Bifidobacterium pseudocatenulatum INIA P815: the first bacterium able to produce urolithins A and B from ellagic acid. J Funct Foods. 2018;45:95–99. doi:10.1016/j.jff.2018.03.040
  • Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–290. doi:10.1016/S0074-7696(03)30005-1
  • Azrad-Leibovich T, Zahavi A, Gohas MF, et al. Characterization of diabetic retinopathy in two mouse models and response to a single injection of anti-vascular endothelial growth factor. Int J Mol Sci. 2022;24:324. doi:10.3390/ijms24010324