172
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Claudin-2 Mediates the Proximal Tubular Epithelial Cell–Fibroblast Crosstalk via Paracrine CTGF

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 55-73 | Received 24 Jul 2023, Accepted 14 Dec 2023, Published online: 02 Jan 2024

References

  • Bikbov B, Purcell CA, Levey AS; Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–733. doi:10.1016/S0140-6736(20)30045-3
  • Soheilipour F, Abbasi Kasbi N, Imankhan M, Eskandari D. Complications and treatment of early-onset type 2 diabetes. Int J Endocrinol Metab. 2023;21(3):e135004. doi:10.5812/ijem-135004
  • Gilbert RE. Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66(4):791–800. doi:10.2337/db16-0796
  • Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253–283. doi:10.1007/978-981-13-8871-2_12
  • Peng Z, Wang H, Zheng J, et al. Is the proximal tubule the focus of tubulointerstitial fibrosis? Heliyon. 2023;9(2):e13508. doi:10.1016/j.heliyon.2023.e13508
  • Schiessl IM. The role of tubule-interstitial crosstalk in renal injury and recovery. Semin Nephrol. 2020;40(2):216–231. doi:10.1016/j.semnephrol.2020.01.012
  • Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol. 2014;10(12):700–711. doi:10.1038/nrneph.2014.184
  • Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal. 2021;15(4):567–580. doi:10.1007/s12079-021-00650-2
  • Saito AC, Higashi T, Chiba H. Tight-junction strand networks and tightness of the epithelial barrier. Microscopy. 2023;72(3):213–225. doi:10.1093/jmicro/dfad008
  • Sun H, Li H, Yan J, et al. Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. Nat Commun. 2022;13(1):1600. doi:10.1038/s41467-022-29277-6
  • Yu AS. Claudins and the kidney. J Am Soc Nephrol. 2015;26(1):11–19. doi:10.1681/ASN.2014030284
  • Nyimanu D, Behm C, Choudhury S, Yu ASL. The role of claudin-2 in kidney function and dysfunction. Biochem Soc Trans. 2023;51(4):1437–1445. doi:10.1042/BST20220639
  • Muto S, Hata M, Taniguchi J, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A. 2010;107(17):8011–8016. doi:10.1073/pnas.0912901107
  • Pei L, Solis G, Nguyen MT, et al. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest. 2016;126(7):2509–2518. doi:10.1172/JCI83942
  • Venugopal S, Anwer S, Szaszi K. Claudin-2: roles beyond permeability functions. Int J Mol Sci. 2019;20(22):5655. doi:10.3390/ijms20225655
  • Trujillo J, Molina-Jijon E, Medina-Campos ON, et al. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct. 2016;7(1):279–293. doi:10.1039/c5fo00624d
  • Dan Q, Shi Y, Rabani R, et al. Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells. J Biol Chem. 2019;294(42):15446–15465. doi:10.1074/jbc.RA118.006484
  • Guo C, Li Y, Zhang R, et al. Protective effect of salidroside against diabetic kidney disease through inhibiting BIM-mediated apoptosis of proximal renal tubular cells in rats. Front Pharmacol. 2018;9:1433. doi:10.3389/fphar.2018.01433
  • Xu C, Zhou X, Xie T, et al. Renal tubular Bim mediates the tubule-podocyte crosstalk via NFAT2 to induce podocyte cytoskeletal dysfunction. Theranostics. 2020;10(15):6806–6824. doi:10.7150/thno.43145
  • Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17(9):564–580. doi:10.1038/nrm.2016.80
  • Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–165. doi:10.1016/j.semcdb.2014.08.011
  • Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol. 2006;290(1):F20–F34. doi:10.1152/ajprenal.00052.2005
  • Peng Q, Wu W, Wu KY, et al. The C5a/C5aR1 axis promotes progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia/reperfusion injury. Kidney Int. 2019;96(1):117–128. doi:10.1016/j.kint.2019.01.039
  • Williams BM, Cliff CL, Demirel I, Squires PE, Hills CE. Blocking connexin 43 hemichannel-mediated ATP release reduces communication within and between tubular epithelial cells and medullary fibroblasts in a model of diabetic nephropathy. Diabet Med. 2022;39(12):e14963. doi:10.1111/dme.14963
  • Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97. doi:10.2353/ajpath.2010.090517
  • LeBleu VS, Taduri G, O’Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–1053. doi:10.1038/nm.3218
  • Grande MT, Sanchez-Laorden B, Lopez-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–997. doi:10.1038/nm.3901
  • Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab. 2016;27(10):681–695. doi:10.1016/j.tem.2016.06.004
  • Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126. doi:10.1038/s41419-018-1157-x
  • Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int. 2017;91(3):552–560. doi:10.1016/j.kint.2016.08.025
  • Laustsen C, Ostergaard JA, Lauritzen MH, et al. Assessment of early diabetic renal changes with hyperpolarized [1-(13) C]pyruvate. Diabetes Metab Res Rev. 2013;29(2):125–129. doi:10.1002/dmrr.2370
  • Asl Y. Paracellular transport and energy utilization in the renal tubule. Curr Opin Nephrol Hypertens. 2017;26(5):398–404. doi:10.1097/MNH.0000000000000348
  • Layton AT, Vallon V, Edwards A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol. 2015;308(12):F1343–1357. doi:10.1152/ajprenal.00007.2015
  • Fujiwara-Tani R, Mori S, Ogata R, et al. Claudin-4: a new molecular target for epithelial cancer therapy. Int J Mol Sci. 2023;24:6.
  • Molina-Jijon E, Rodriguez-Munoz R, Namorado Mdel C, Pedraza-Chaverri J, Reyes JL. Oxidative stress induces claudin-2 nitration in experimental type 1 diabetic nephropathy. Free Radic Biol Med. 2014;72:162–175. doi:10.1016/j.freeradbiomed.2014.03.040
  • Uil M, Scantlebery AML, Butter LM, et al. Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the ‘resistant’ C57Bl/6J mouse strain. Sci Rep. 2018;8(1):5542. doi:10.1038/s41598-018-23839-9
  • Zhang YH, Zhang YQ, Guo CC, et al. Prostaglandin E1 attenuates high glucose-induced apoptosis in proximal renal tubular cells by inhibiting the JNK/Bim pathway. Acta Pharmacol Sin. 2020;41(4):561–571. doi:10.1038/s41401-019-0314-9
  • Balkovetz DF, Chumley P, Amlal H. Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis. Am J Physiol Renal Physiol. 2009;297(3):F604–F611. doi:10.1152/ajprenal.00043.2009
  • Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szaszi K. Tumor necrosis factor-alpha induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol. 2015;309(1):C38–C50. doi:10.1152/ajpcell.00388.2014
  • Ikari A, Takiguchi A, Atomi K, Sugatani J. Epidermal growth factor increases clathrin-dependent endocytosis and degradation of claudin-2 protein in MDCK II cells. J Cell Physiol. 2011;226(9):2448–2456. doi:10.1002/jcp.22590
  • Martin-Martin N, Dan Q, Amoozadeh Y, et al. RhoA and Rho kinase mediate cyclosporine A and sirolimus-induced barrier tightening in renal proximal tubular cells. Int J Biochem Cell Biol. 2012;44(1):178–188. doi:10.1016/j.biocel.2011.10.014
  • Ikari A, Fujii N, Hahakabe S, et al. Hyperosmolarity-induced down-regulation of Claudin-2 mediated by decrease in PKCbeta-Dependent GATA-2 in MDCK Cells. J Cell Physiol. 2015;230(11):2776–2787. doi:10.1002/jcp.25004
  • Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: an update. Life. 2023;13:2.
  • Mongelli-Sabino BM, Canuto LP, Collares-Buzato CB. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line. Life Sci. 2017;188:149–157. doi:10.1016/j.lfs.2017.09.004
  • Wei M, Zhang Y, Yang X, et al. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription. Clin Transl Med. 2021;11(12):e667. doi:10.1002/ctm2.667
  • Sukka-Ganesh B, Mohammed KA, Kaye F, Goldberg EP, Nasreen N. Ephrin-A1 inhibits NSCLC tumor growth via induction of Cdx-2 a tumor suppressor gene. BMC Cancer. 2012;12(1):309. doi:10.1186/1471-2407-12-309
  • Wang YB, Shi Q, Li G, Zheng JH, Lin J, Qiu W. MicroRNA-488 inhibits progression of colorectal cancer via inhibition of the mitogen-activated protein kinase pathway by targeting claudin-2. Am J Physiol Cell Physiol. 2019;316(1):C33–C47. doi:10.1152/ajpcell.00047.2018
  • Sakai N, Nakamura M, Lipson KE, et al. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci Rep. 2017;7(1):5392. doi:10.1038/s41598-017-05624-2
  • Wang Y, Yu Y, Xu M, Zhou J, Kang G, Li K. Circ_0080940 regulates miR-139-5p/CTGF pathway to promote the proliferation, migration, extracellular matrix deposition of human tenon’s capsule fibroblasts. Curr Eye Res. 2023;48(1):34–43. doi:10.1080/02713683.2022.2138449
  • Slagman MC, Nguyen TQ, Waanders F, et al. Effects of antiproteinuric intervention on elevated connective tissue growth factor (CTGF/CCN-2) plasma and urine levels in nondiabetic nephropathy. Clin J Am Soc Nephrol. 2011;6(8):1845–1850. doi:10.2215/CJN.08190910
  • Nguyen TQ, Roestenberg P, van Nieuwenhoven FA, et al. CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol. 2008;19(11):2098–2107. doi:10.1681/ASN.2007111261
  • Miranda MZ, Lichner Z, Szaszi K, Kapus A. MRTF: basic biology and role in kidney disease. Int J Mol Sci. 2021;22(11):6040. doi:10.3390/ijms22116040
  • Shao J, Xu H, Wu X, Xu Y. Epigenetic activation of CTGF transcription by high glucose in renal tubular epithelial cells is mediated by myocardin-related transcription factor A. Cell Tissue Res. 2020;379(3):549–559. doi:10.1007/s00441-019-03124-5
  • Takigawa M, Iida M, Nagase S, et al. Creation of a Claudin-2 binder and its tight junction-modulating activity in a human intestinal model. J Pharmacol Exp Ther. 2017;363(3):444–451. doi:10.1124/jpet.117.242214