145
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Iron Overload in Diabetic Cognitive Impairment: A Review

ORCID Icon, , ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 3235-3247 | Received 28 Jul 2023, Accepted 29 Sep 2023, Published online: 18 Oct 2023

References

  • Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460–2469. doi:10.1007/s00125-005-0023-4
  • Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 2015;14(3):329–340. doi:10.1016/S1474-4422(14)70249-2
  • McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379(9833):2291–2299. doi:10.1016/S0140-6736(12)60360-2
  • Rawlings AM, Sharrett AR, Schneider AL, et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161(11):785–793. doi:10.7326/M14-0737
  • Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B. Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care. 2011;34(5):1102–1108. doi:10.2337/dc10-1333
  • Ashraghi MR, Pagano G, Polychronis S, Niccolini F, Politis M. Parkinson’s disease, diabetes and cognitive impairment. Recent Pat Endocr Metab Immune Drug Discov. 2016;10(1):11–21. doi:10.2174/1872214810999160628105549
  • Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–828. doi:10.1016/S1474-4422(11)70072-2
  • Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. Biochim Biophys Acta. 2012;1820(3):161–187. doi:10.1016/j.bbagen.2011.08.002
  • Milto IV, Suhodolo IV, Prokopieva VD, Klimenteva TK. Molecular and cellular bases of iron metabolism in humans. Biochemistry. 2016;81(6):549–564. doi:10.1134/S0006297916060018
  • Gao H, Yang J, Pan W, Yang M. Iron overload and the risk of diabetes in the general population: results of the Chinese health and nutrition survey cohort study. Diabetes Metab J. 2022;46(2):307–318. doi:10.4093/dmj.2020.0287
  • Harrison AV, Lorenzo FR, McClain DA. Iron and the Pathophysiology of Diabetes. Annu Rev Physiol. 2023;85:339–362. doi:10.1146/annurev-physiol-022522-102832
  • Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–1933. doi:10.2337/dc06-2625
  • Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009;1790(7):671–681. doi:10.1016/j.bbagen.2008.04.005
  • Sampaio AF, Silva M, Dornas WC, et al. Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals. 2014;27(2):349–361. doi:10.1007/s10534-014-9717-8
  • Minamiyama Y, Takemura S, Kodai S, et al. Iron restriction improves type 2 diabetes mellitus in otsuka long-Evans Tokushima fatty rats. Am J Physiol Endocrinol Metab. 2010;298(6):E1140–9. doi:10.1152/ajpendo.00620.2009
  • Geng W, Pan L, Shen L, et al. Evaluating renal iron overload in diabetes mellitus by blood oxygen level-dependent magnetic resonance imaging: a longitudinal experimental study. BMC Med Imaging. 2022;22(1):200. doi:10.1186/s12880-022-00939-7
  • Wang B, Zhang Y, Sun N, et al. MRI-measured myocardial iron load in patients with severe diabetic heart failure. Clin Radiol. 2018;73(3):324 e1–324 e7. doi:10.1016/j.crad.2017.10.012
  • Zhang WL, Meng HZ, Yang MW. Regulation of DMT1 on bone microstructure in type 2 diabetes. Int J Med Sci. 2015;12(5):441–449. doi:10.7150/ijms.11986
  • An JR, Su JN, Sun GY, et al. Liraglutide alleviates cognitive deficit in db/db Mice: involvement in oxidative stress, iron overload, and ferroptosis. Neurochem Res. 2022;47(2):279–294. doi:10.1007/s11064-021-03442-7
  • Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17(1):130. doi:10.3390/ijms17010130
  • Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer’s disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol. 2016;38:1–9. doi:10.1016/j.jtemb.2016.06.005
  • Knierim JJ. The hippocampus. Curr Biol. 2015;25(23):R1116–21. doi:10.1016/j.cub.2015.10.049
  • Milne NT, Bucks RS, Davis WA, et al. Hippocampal atrophy, asymmetry, and cognition in type 2 diabetes mellitus. Brain Behav. 2018;8(1):e00741. doi:10.1002/brb3.741
  • Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience. 2005;136(2):477–486. doi:10.1016/j.neuroscience.2005.08.019
  • Hao L, Mi J, Song L, et al. SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes. Neuroscience. 2021;463:216–226. doi:10.1016/j.neuroscience.2021.03.009
  • Tang W, Li Y, He S, et al. Caveolin-1 alleviates diabetes-associated cognitive dysfunction through modulating neuronal ferroptosis-mediated mitochondrial homeostasis. Antioxid Redox Signal. 2022;37(13–15):867–886. doi:10.1089/ars.2021.0233
  • Soltesz I, Losonczy A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci. 2018;21(4):484–493. doi:10.1038/s41593-018-0118-0
  • Xie Z, Wang X, Luo X, et al. Activated AMPK mitigates diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochem Pharmacol. 2023;207:115374. doi:10.1016/j.bcp.2022.115374
  • An JR, Liu JT, Gao XM, et al. Effects of liraglutide on astrocyte polarization and neuroinflammation in db/db mice: focus on iron overload and oxidative stress. Front Cell Neurosci. 2023;17:1136070. doi:10.3389/fncel.2023.1136070
  • Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 2007;32(11):1884–1890. doi:10.1007/s11064-007-9375-0
  • Gholamhosseinian A, Abbasalipourkabir R, Ziamajidi N, Sayadi M, Sayadi K. The anti-inflammatory effect of omega-3 polyunsaturated fatty acids dramatically decreases by iron in the hippocampus of diabetic rats. Life Sci. 2020;245:117393. doi:10.1016/j.lfs.2020.117393
  • Hedden T, Gabrieli JD. Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. Neuroimage. 2010;51(1):421–431. doi:10.1016/j.neuroimage.2010.01.089
  • Yang Q, Zhou L, Liu C, et al. Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study. Brain Imaging Behav. 2018;12(5):1479–1487. doi:10.1007/s11682-017-9815-7
  • Li J, Zhang Q, Zhang N, Guo L. Increased brain iron deposition in the putamen in patients with type 2 diabetes mellitus detected by quantitative susceptibility mapping. J Diabetes Res. 2020;2020:7242530. doi:10.1155/2020/7242530
  • Li J, Zhang Q, Zhang N, Guo L. Increased brain iron detection by voxel-based quantitative susceptibility mapping in type 2 diabetes mellitus patients with an executive function decline. Front Neurosci. 2020;14:606182. doi:10.3389/fnins.2020.606182
  • Pandur E, Szabo I, Hormay E, et al. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr. 2022;14(1):147. doi:10.1186/s13098-022-00919-5
  • Mechlovich D, Amit T, Bar-Am O, Weinreb O, Youdim MB. Molecular targets of the multifunctional iron-chelating drug, M30, in the brains of mouse models of type 2 diabetes mellitus. Br J Pharmacol. 2014;171(24):5636–5649. doi:10.1111/bph.12862
  • McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Front Mol Neurosci. 2015;8:31. doi:10.3389/fnmol.2015.00031
  • McCarthy RC, Kosman DJ. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72(4):709–727. doi:10.1007/s00018-014-1771-4
  • Dusek P, Hofer T, Alexander J, Roos PM, Aaseth JO. cerebral iron deposition in neurodegeneration. Biomolecules. 2022;12(5):714. doi:10.3390/biom12050714
  • Brock JH. Lactoferrin--50 years on. Biochem Cell Biol. 2012;90(3):245–251. doi:10.1139/o2012-018
  • Burdo JR, Menzies SL, Simpson IA, et al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res. 2001;66(6):1198–1207. doi:10.1002/jnr.1256
  • Cheli VT, Correale J, Paez PM, Pasquini JM. Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro. 2020;12:1759091420962681. doi:10.1177/1759091420962681
  • Wang XS, Ong WY, Connor JR. A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol. 2001;30(4):353–360. doi:10.1023/a:1014464514793
  • Skjorringe T, Burkhart A, Johnsen KB, Moos T. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19. doi:10.3389/fnmol.2015.00019
  • Batista-Nascimento L, Pimentel C, Menezes RA, Rodrigues-Pousada C. Iron and neurodegeneration: from cellular homeostasis to disease. Oxid Med Cell Longev. 2012;2012:128647. doi:10.1155/2012/128647
  • Abdul Y, Li W, Ward R, et al. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis. Transl Stroke Res. 2021;12(4):615–630. doi:10.1007/s12975-020-00844-7
  • Li W, Abdul Y, Chandran R, et al. Deferoxamine prevents poststroke memory impairment in female diabetic rats: potential links to hemorrhagic transformation and ferroptosis. Am J Physiol Heart Circ Physiol. 2023;324(2):H212–H225. doi:10.1152/ajpheart.00490.2022
  • Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(8):551–564. doi:10.1038/nrn3453
  • Pelizzoni I, Zacchetti D, Campanella A, Grohovaz F, Codazzi F. Iron uptake in quiescent and inflammation-activated astrocytes: a potentially neuroprotective control of iron burden. Biochim Biophys Acta. 2013;1832(8):1326–1333. doi:10.1016/j.bbadis.2013.04.007
  • Moghaddam HK, Baluchnejadmojarad T, Roghani M, et al. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol. 2014;49(2):820–826. doi:10.1007/s12035-013-8559-7
  • Shen Z, Li ZY, Yu MT, Tan KL, Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer’s disease and type 2 diabetes brains. Bio Pharmacoth. 2023;158:114206. doi:10.1016/j.biopha.2022.114206
  • Lal A. Iron in health and disease: an update. Indian J Pediatr. 2020;87(1):58–65. doi:10.1007/s12098-019-03054-8
  • Zhang N, Yu X, Xie J, Xu H. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol. 2021;58(6):2812–2823. doi:10.1007/s12035-020-02277-7
  • Worwood M. Ferritin in human tissues and serum. Clin Haematol. 1982;11(2):275–307. doi:10.1016/S0308-2261(21)00338-6
  • Powell LW, Alpert E, Isselbacher KJ, Drysdale JW. Human isoferritins: organ specific iron and apoferritin distribution. Br J Haematol. 1975;30(1):47–55. doi:10.1111/j.1365-2141.1975.tb00516.x
  • Connor JR, Menzies SL. Cellular management of iron in the brain. J Neurol Sci. 1995;134:33–44. doi:10.1016/0022-510x(95)00206-h
  • Qi Y, Dawson G. Hypoxia specifically and reversibly induces the synthesis of ferritin in oligodendrocytes and human oligodendrogliomas. J Neurochem. 1994;63(4):1485–1490. doi:10.1046/j.1471-4159.1994.63041485.x
  • Connor JR. Iron acquisition and expression of iron regulatory proteins in the developing brain: manipulation by ethanol exposure, iron deprivation and cellular dysfunction. Dev Neurosci. 1994;16(5–6):233–247. doi:10.1159/000112115
  • Guo G, Sun M, Li Y, et al. Serum ferritin has limited prognostic value on mortality risk in patients with decompensated cirrhosis: a propensity score matching analysis. Lab Med. 2023;54(1):47–55. doi:10.1093/labmed/lmac064
  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–873. doi:10.1038/nrn1537
  • Zeinivand M, Nahavandi A, Baluchnejadmojarad T, Roghani M, Golab F. Dalteparin as a novel therapeutic agent to prevent diabetic encephalopathy by targeting oxidative stress and inflammation. Basic Clin Neurosci. 2020;11(6):795–804. doi:10.32598/bcn.11.6.1775.1
  • Jeong EA, Lee J, Shin HJ, et al. Tonicity-responsive enhancer-binding protein promotes diabetic neuroinflammation and cognitive impairment via upregulation of lipocalin-2. J Neuroinflammation. 2021;18(1):278. doi:10.1186/s12974-021-02331-8
  • Kim BW, Jeong KH, Kim JH, et al. Pathogenic upregulation of glial lipocalin-2 in the parkinsonian dopaminergic system. J Neurosci. 2016;36(20):5608–5622. doi:10.1523/JNEUROSCI.4261-15.2016
  • Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–130. doi:10.1146/annurev-nutr-071816-064559
  • Ma Z, Zhou Y, Xie J. Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of rats. Neurotox Res. 2012;22(4):274–279. doi:10.1007/s12640-012-9309-8
  • Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–7810. doi:10.1074/jbc.M008922200
  • Raha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SR, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24. doi:10.1186/s12868-015-0161-7
  • Liu J, Hu X, Xue Y, et al. Targeting hepcidin improves cognitive impairment and reduces iron deposition in a diabetic rat model. Am J Transl Res. 2020;12(8):4830–4839.
  • Du F, Qian ZM, Luo Q, Yung WH, Ke Y. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol. 2015;52(1):101–114. doi:10.1007/s12035-014-8847-x
  • Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–2093. doi:10.1126/science.1104742
  • Jiang F, Sun ZZ, Tang YT, Xu C, Jiao XY. Hepcidin expression and iron parameters change in Type 2 diabetic patients. Diabetes Res Clin Pract. 2011;93(1):43–48. doi:10.1016/j.diabres.2011.03.028
  • Sam AH, Busbridge M, Amin A, et al. Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet Med. 2013;30(12):1495–1499. doi:10.1111/dme.12262
  • Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci. 2008;9(1):36–45. doi:10.1038/nrn2294
  • Xiao Z, Shen D, Lan T, et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol. 2022;50:102256. doi:10.1016/j.redox.2022.102256
  • Fernandez-Real JM, Ricart-Engel W, Arroyo E, et al. Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care. 1998;21(1):62–68. doi:10.2337/diacare.21.1.62
  • Ferrannini E. Insulin resistance, iron, and the liver. Lancet. 2000;355(9222):2181–2182. doi:10.1016/S0140-6736(00)02397-7
  • Cooksey RC, Jones D, Gabrielsen S, et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab. 2010;298(6):E1236–43. doi:10.1152/ajpendo.00022.2010
  • Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Hernandez-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes. 2002;51(4):1000–1004. doi:10.2337/diabetes.51.4.1000
  • Houschyar KS, Ludtke R, Dobos GJ, et al. Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial. BMC Med. 2012;10:54. doi:10.1186/1741-7015-10-54
  • Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr Diab Rep. 2016;16(9):87. doi:10.1007/s11892-016-0775-x
  • Nuzzo D, Picone P, Baldassano S, et al. Insulin resistance as common molecular denominator linking obesity to alzheimer’s disease. Curr Alzheimer Res. 2015;12(8):723–735. doi:10.2174/1567205012666150710115506
  • De Felice FG, Benedict C. A key role of insulin receptors in memory. Diabetes. 2015;64(11):3653–3655. doi:10.2337/dbi15-0011
  • Takechi R, Lam V, Brook E, et al. Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: an implication for causal link. Front Aging Neurosci. 2017;9:399. doi:10.3389/fnagi.2017.00399
  • Chung JY, Kim HS, Song J. Iron metabolism in diabetes-induced Alzheimer’s disease: a focus on insulin resistance in the brain. Biometals. 2018;31(5):705–714. doi:10.1007/s10534-018-0134-2
  • Noetzli LJ, Mittelman SD, Watanabe RM, Coates TD, Wood JC. Pancreatic iron and glucose dysregulation in thalassemia major. Am J Hematol. 2012;87(2):155–160. doi:10.1002/ajh.22223
  • Chen L, Li Y, Zhang F, Zhang S, Zhou X, Ji L. Association of serum ferritin levels with metabolic syndrome and insulin resistance in a Chinese population. J Diabetes Complications. 2017;31(2):364–368. doi:10.1016/j.jdiacomp.2016.06.018
  • Fernandez-Real JM, Manco M. Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol. 2014;2(6):513–526. doi:10.1016/S2213-8587(13)70174-8
  • Cerasuolo M, Di Meo I, Auriemma MC, et al. Iron and ferroptosis more than a suspect: beyond the most common mechanisms of neurodegeneration for new therapeutic approaches to cognitive decline and dementia. Int J Mol Sci. 2023;24(11):9637. doi:10.3390/ijms24119637
  • Zhang X, Zhang L, Tan YM, et al. Hepcidin gene silencing ameliorated inflammation and insulin resistance in adipose tissue of db/db mice via inhibiting METs formation. Mol Immunol. 2021;133:110–121. doi:10.1016/j.molimm.2021.02.015
  • Wang H, Li H, Jiang X, Shi W, Shen Z, Li M. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes. 2014;63(5):1506–1518. doi:10.2337/db13-1195
  • Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–150. doi:10.1016/j.diabres.2014.04.006
  • Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56(3):1883–1896. doi:10.1007/s12035-018-1195-5
  • Yun JH, Lee DH, Jeong HS, Kim HS, Ye SK, Cho CH. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J Cell Physiol. 2021;236(10):7058–7070. doi:10.1002/jcp.30373
  • Lee HJ, Yang SJ. Supplementation with nicotinamide riboside reduces brain inflammation and improves cognitive function in diabetic mice. Int J Mol Sci. 2019;20:17.
  • Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126(4):541–549. doi:10.1111/jnc.12244
  • Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-alpha and TGF-beta1. Glia. 2012;60(5):738–750. doi:10.1002/glia.22303
  • Wang J, Song N, Jiang H, Wang J, Xie J. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta. 2013;1832(5):618–625. doi:10.1016/j.bbadis.2013.01.021
  • Vela D. The dual role of hepcidin in brain iron load and inflammation. Front Neurosci. 2018;12:740. doi:10.3389/fnins.2018.00740
  • Zeinivand M, Nahavandi A, Zare M. Deferoxamine regulates neuroinflammation and oxidative stress in rats with diabetes-induced cognitive dysfunction. Inflammopharmacology. 2020;28(2):575–583. doi:10.1007/s10787-019-00665-7
  • Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis. 2009;16(4):879–895. doi:10.3233/JAD-2009-1010
  • Schroder N, Figueiredo LS, De lima MN. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis. 2013;34(4):797–812. doi:10.3233/JAD-121996
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211. doi:10.1016/j.taap.2004.06.021
  • Stoyanovsky DA, Tyurina YY, Shrivastava I, et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic Biol Med. 2019;133:153–161. doi:10.1016/j.freeradbiomed.2018.09.008
  • Hoyos CM, Stephen C, Turner A, Ireland C, Naismith SL, Duffy SL. Brain oxidative stress and cognitive function in older adults with diabetes and pre-diabetes who are at risk for dementia. Diabetes Res Clin Pract. 2022;184:109178. doi:10.1016/j.diabres.2021.109178
  • Clark GJ, Pandya K, Lau-Cam CA. The effect of metformin and taurine, alone and in combination, on the oxidative stress caused by diabetes in the rat brain. Adv Exp Med Biol. 2017;975(1):353–369. doi:10.1007/978-94-024-1079-2_31
  • Marefati N, Abdi T, Beheshti F, Vafaee F, Mahmoudabady M, Hosseini M. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Horm Mol Biol Clin Investig. 2021;43(1):15–26. doi:10.1515/hmbci-2021-0033
  • Reus GZ, Dos Santos MA, Abelaira HM, et al. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev. 2016;32(3):278–288. doi:10.1002/dmrr.2732
  • Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5(5):561–568. doi:10.1097/00075197-200209000-00016
  • Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148–160. doi:10.1038/s41583-019-0132-6
  • Pratico D, Sung S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. J Alzheimers Dis. 2004;6(2):171–175. doi:10.3233/jad-2004-6209
  • Park MW, Cha HW, Kim J, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021;41:101947. doi:10.1016/j.redox.2021.101947
  • Zhao S, Zhang L, Xu Z, Chen W. Neurotoxic effects of iron overload under high glucose concentration. Neural Regen Res. 2013;8(36):3423–3433. doi:10.3969/j.issn.1673-5374.2013.36.008
  • Zhao M, Li XW, Chen Z, et al. Neuro-protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via AMPK/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit. 2019;25:2186–2194. doi:10.12659/MSM.911250
  • Duzova H, Naziroglu M, Cig B, Gurbuz P, Akatli AN. Noopept attenuates diabetes-mediated neuropathic pain and oxidative hippocampal neurotoxicity via inhibition of TRPV1 channel in rats. Mol Neurobiol. 2021;58(10):5031–5051. doi:10.1007/s12035-021-02478-8
  • Yang XD, Yang YY. Ferroptosis as a novel therapeutic target for diabetes and its complications. Front Endocrinol (Lausanne). 2022;13:853822. doi:10.3389/fendo.2022.853822
  • Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021;2021:9999612. doi:10.1155/2021/9999612
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
  • Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 2018;9:1371. doi:10.3389/fphar.2018.01371
  • Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem Biophys. 2020;680:108241. doi:10.1016/j.abb.2019.108241
  • Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–1032. doi:10.1038/cr.2016.95
  • Lei P, Bai T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol. 2019;10:139. doi:10.3389/fphys.2019.00139
  • Guo T, Yu Y, Yan W, et al. Erythropoietin ameliorates cognitive dysfunction in mice with type 2 diabetes mellitus via inhibiting iron overload and ferroptosis. Exp Neurol. 2023;365:114414. doi:10.1016/j.expneurol.2023.114414
  • Chen J, Guo P, Han M, Chen K, Qin J, Yang F. Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis. Phytother Res. 2023;37:3323–3341. doi:10.1002/ptr.7807
  • Chen C, Huang Y, Xia P, et al. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem. 2021;65(3). doi:10.4081/ejh.2021.3224
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. doi:10.1080/01926230701320337
  • Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol. 2017;10(4):409–428. doi:10.1080/17512433.2017.1293521
  • Kong FJ, Ma LL, Guo JJ, Xu LH, Li Y, Qu S. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond). 2018;132(1):111–125. doi:10.1042/CS20171432
  • Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med. 2016;7:57. doi:10.4103/2008-7802.178531
  • de Lima MN, Polydoro M, Laranja DC, et al. Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci. 2005;21(9):2521–2528. doi:10.1111/j.1460-9568.2005.04083.x
  • Hansen JB, Dos Santos LRB, Liu Y, et al. Glucolipotoxic conditions induce beta-cell iron import, cytosolic ROS formation and apoptosis. J Mol Endocrinol. 2018;61(2):69–77. doi:10.1530/JME-17-0262
  • Yun S, He X, Zhang W, Chu D, Feng C. Alleviation effect of grape seed proanthocyanidins on neuronal apoptosis in rats with iron overload. Biol Trace Elem Res. 2020;194(1):210–220. doi:10.1007/s12011-019-01766-8
  • Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10(11):969–977. doi:10.1016/S1474-4422(11)70188-0
  • Erus G, Battapady H, Zhang T, et al. Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care. 2015;38(1):97–104. doi:10.2337/dc14-1196
  • Tella SH, Rendell MS. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance. Ther Adv Endocrinol Metab. 2015;6(3):109–134. doi:10.1177/2042018815580257
  • Wicinski M, Socha M, Malinowski B, et al. Liraglutide and its neuroprotective properties-focus on possible biochemical mechanisms in alzheimer’s disease and cerebral ischemic events. Int J Mol Sci. 2019;20:5.
  • Zhang M, Yan W, Yu Y, et al. Liraglutide ameliorates diabetes-associated cognitive dysfunction via rescuing autophagic flux. J Pharmacol Sci. 2021;147(3):234–244. doi:10.1016/j.jphs.2021.07.004
  • Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep. 2018;18(2):2449–2457. doi:10.3892/mmr.2018.9180
  • Song JX, An JR, Chen Q, et al. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice. Bioengineered. 2022;13(4):8334–8348. doi:10.1080/21655979.2022.2051858
  • Reus GZ, Bernardini Dos Santos MA, Abelaira HM, et al. Antioxidant therapy alters brain MAPK-JNK and BDNF signaling path-ways in experimental diabetes mellitus. Curr Neurovasc Res. 2016;13(2):107–114. doi:10.2174/1567202613666160219115832
  • Zeinivand M, Sharifi M, Hassanshahi G, Nedaei SE. Deferoxamine has the potential to improve the COVID-19-related inflammatory response in diabetic patients. Int J Pept Res Ther. 2023;29(4):63. doi:10.1007/s10989-023-10516-3
  • Hattori N, Schnell O, Bengel FM, et al. Deferoxamine improves coronary vascular responses to sympathetic stimulation in patients with type 1 diabetes mellitus. Eur J Nucl Med Mol Imaging. 2002;29(7):891–898. doi:10.1007/s00259-002-0799-0
  • Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. J Ethnopharmacol. 2021;280:114464. doi:10.1016/j.jep.2021.114464
  • Shi JJ, Liu HF, Hu T, et al. Danggui-Shaoyao-San improves cognitive impairment through inhibiting O-GlcNAc-modification of estrogen alpha receptor in female db/db mice. J Ethnopharmacol. 2021;281:114562. doi:10.1016/j.jep.2021.114562
  • Fu X, Liu Q, Sun X, Chang H, Liu Y, Han J. Research advances in the treatment of alzheimer’s disease with polysaccharides of danggui-shaoyao-san. J Alzheimers Dis. 2022;85(1):7–19. doi:10.3233/JAD-210656
  • Wang S, He B, Hang W, et al. Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via Restoring PI3K/Akt/GSK3beta Pathway. J Alzheimers Dis. 2018;65(4):1385–1400. doi:10.3233/JAD-180497
  • Zhang JH, Zhang JF, Song J, et al. Effects of berberine on diabetes and cognitive impairment in an animal model: the mechanisms of action. Am J Chin Med. 2021;49(6):1399–1415. doi:10.1142/S0192415X21500658
  • Wang Y, Yue S, Cai F, et al. Treatment of berberine alleviates diabetic nephropathy by reducing iron overload and inhibiting oxidative stress. Histol Histopathol. 2023:18599. doi:10.14670/HH-18-599
  • American Diabetes Association. 9. Professional practice committee: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S3. doi:10.2337/dc21-Sppc
  • Wing RR, Look ARG. Does lifestyle intervention improve health of adults with overweight/obesity and type 2 diabetes? Findings from the Look AHEAD Randomized Trial. Obesity. 2021;29(8):1246–1258. doi:10.1002/oby.23158
  • Espeland MA, Luchsinger JA, Baker LD, et al. Effect of a long-term intensive lifestyle intervention on prevalence of cognitive impairment. Neurology. 2017;88(21):2026–2035. doi:10.1212/WNL.0000000000003955
  • Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–666. doi:10.1038/s41582-018-0070-3
  • Palta P, Carlson MC, Crum RM, et al. Diabetes and cognitive decline in older adults: the ginkgo evaluation of memory study. J Gerontol a Biol Sci Med Sci. 2017;73(1):123–130. doi:10.1093/gerona/glx076