164
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Alpha-Linolenic Acid Ameliorates Cognitive Impairment and Liver Damage Caused by Obesity

, , &
Pages 981-995 | Received 08 Sep 2023, Accepted 13 Dec 2023, Published online: 28 Feb 2024

References

  • Dubern B, Mosbah H, Pigeyre M, et al. Rare genetic causes of obesity: diagnosis and management in clinical care. Ann Endocrinol. 2022;83(1):63–72. doi:10.1016/j.ando.2021.12.003
  • Marcelin G, Silveira ALM, Martins LB, et al. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest. 2019;129(10):4032–4040. doi:10.1172/JCI129192
  • Mayoral LP, Andrade G, Mayoral E-C, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020;151(1):11–21. doi:10.4103/ijmr.IJMR_1768_17
  • Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–1500. doi:10.1161/CIRCRESAHA.120.316101
  • Sandouk Z, Lansang MC. Diabetes with obesity--Is there an ideal diet? Cleve Clin J Med. 2017;84(7 Suppl 1):S4–s14. doi:10.3949/ccjm.84.s1.02
  • Milić S, Lulić D, Štimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol. 2014;20(28):9330–9337. doi:10.3748/wjg.v20.i28.9330
  • Tomlinson DJ, Erskine RM, Morse CI, et al. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17(3):467–483. doi:10.1007/s10522-015-9626-4
  • Kim KB, Nam YA, Kim HS, et al. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol. 2014;70:163–178. doi:10.1016/j.fct.2014.05.009
  • Burdge G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7(2):137–144. doi:10.1097/00075197-200403000-00006
  • Pan A, Chen M, Chowdhury R, et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr. 2012;96(6):1262–1273. doi:10.3945/ajcn.112.044040
  • Desale SE, Dubey T, Chinnathambi S. α-Linolenic acid inhibits Tau aggregation and modulates Tau conformation. Int J Biol Macromol. 2021;166:687–693. doi:10.1016/j.ijbiomac.2020.10.226
  • de Lorgeril M, Salen P. Alpha-linolenic acid and coronary heart disease. Nutr, Metab Cardiovasc Dis. 2004;14(3):162–169. doi:10.1016/S0939-4753(04)80037-1
  • Hattiangady B, Mishra V, Kodali M, et al. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness. Front Behav Neurosci. 2014;8:78. doi:10.3389/fnbeh.2014.00078
  • Subhramanyam CS, Wang C, Hu Q, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–120. doi:10.1016/j.semcdb.2019.05.004
  • Piermartiri T, Pan H, Figueiredo T, et al. α-Linolenic Acid, A nutraceutical with pleiotropic properties that targets endogenous neuroprotective pathways to protect against organophosphate nerve agent-induced neuropathology. Molecules. 2015;20(11):20355–20380. doi:10.3390/molecules201119698
  • Gao H, Yan P, Zhang S, et al. Chronic alpha-linolenic acid treatment alleviates age-associated neuropathology: roles of PERK/eIF2α signaling pathway. Brain Behav Immun. 2016;57:314–325. doi:10.1016/j.bbi.2015.09.012
  • Lee AY, Lee MH, Lee S, et al. Neuroprotective effect of alpha-linolenic acid against Aβ-mediated inflammatory responses in C6 glial cell. J Agric Food Chem. 2018;66(19):4853–4861. doi:10.1021/acs.jafc.8b00836
  • Zabolotny JM, Kim Y-B, Welsh LA, et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283(21):14230–14241. doi:10.1074/jbc.M800061200
  • Vieira MN, Lyra e Silva NM, Ferreira ST, et al. Protein tyrosine phosphatase 1B (PTP1B): a potential target for alzheimer’s therapy? Front Aging Neurosci. 2017;9:7. doi:10.3389/fnagi.2017.00007
  • Fuentes F, Zimmer D, Atienza M, et al. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning. PLoS One. 2012;7(7):e41536. doi:10.1371/journal.pone.0041536
  • Pathak NM, Pathak V, Lynch AM, et al. Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Mol Cell Endocrinol. 2015;412:95–103. doi:10.1016/j.mce.2015.05.035
  • Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82(4):756–771. doi:10.1016/j.neuron.2014.05.004
  • Jiang Y, Liu Y, Zhu C, et al. Minocycline enhances hippocampal memory, neuroplasticity and synapse-associated proteins in aged C57 BL/6 mice. Neurobiol Learn Mem. 2015;121:20–29. doi:10.1016/j.nlm.2015.03.003
  • Head E, Corrada MM, Kahle-Wrobleski K, et al. Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging. 2009;30(7):1125–1134. doi:10.1016/j.neurobiolaging.2007.10.001
  • Whitfield DR, Vallortigara J, Alghamdi A, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer’s disease: association with cognitive impairment. Neurobiol Aging. 2014;35(12):2836–2844. doi:10.1016/j.neurobiolaging.2014.06.015
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi:10.1038/s41580-020-00324-8
  • Li J, Cao F, Yin H-L, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. doi:10.1038/s41419-020-2298-2
  • Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285. doi:10.1016/j.cell.2017.09.021
  • Lee JY, Nam M, Son HY, et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci U S A. 2020;117(51):32433–32442. doi:10.1073/pnas.2006828117
  • Mak HY, Ouyang Q, Tumanov S, et al. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nat Commun. 2021;12(1):6877. doi:10.1038/s41467-021-27279-4
  • Cautivo KM, Lizama CO, Tapia PJ, et al. AGPAT2 is essential for postnatal development and maintenance of white and brown adipose tissue. Mol Metab. 2016;5(7):491–505. doi:10.1016/j.molmet.2016.05.004
  • Tapia PJ, Figueroa A-M, Eisner V, et al. Absence of AGPAT2 impairs brown adipogenesis, increases IFN stimulated gene expression and alters mitochondrial morphology. Metabolism. 2020;111:154341. doi:10.1016/j.metabol.2020.154341