129
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment

, , , , , & show all
Pages 4269-4282 | Received 21 Sep 2023, Accepted 21 Nov 2023, Published online: 28 Dec 2023

References

  • Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–2251. doi:10.1016/s0140-6736(17)30058-2
  • Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515–2523. doi:10.1001/jama.2017.7596
  • Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846. doi:10.1038/nature05482
  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151
  • Meng X, Liu X, Tan J, et al. From Xiaoke to diabetes mellitus: a review of the research progress in traditional Chinese medicine for diabetes mellitus treatment. Chin Med. 2023;18(1):75. doi:10.1186/s13020-023-00783-z
  • Chan KW, Kwong ASK, Tan KCB, et al. Add-on rehmannia-6-based Chinese medicine in type 2 diabetes and CKD: a multicenter randomized controlled trial. Clin J Am Soc Nephrol. 2023;18(9):1163–1174. doi:10.2215/cjn.0000000000000199
  • Chen YK, Liu TT, Teia FKF, Xie MZ. Exploring the underlying mechanisms of obesity and diabetes and the potential of traditional Chinese medicine: an overview of the literature. Front Endocrinol. 2023;14:1218880. doi:10.3389/fendo.2023.1218880
  • Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem. 2013;20(2):257–271. doi:10.2174/092986713804806621
  • Wang M, Chen L, Liu D, Chen H, Tang DD, Zhao YY. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem Biol Interact. 2017;273:133–141. doi:10.1016/j.cbi.2017.06.011
  • Ren JL, Zhang AH, Kong L, et al. Analytical strategies for the discovery and validation of quality-markers of traditional Chinese medicine. Phytomedicine. 2020;67:153165. doi:10.1016/j.phymed.2019.153165
  • Wang X, Sun H, Zhang A, Sun W, Wang P, Wang Z. Potential role of metabolomics apporoaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine. J Pharm Biomed Anal. 2011;55(5):859–868. doi:10.1016/j.jpba.2011.01.042
  • Zhang A, Sun H, Wang Z, Sun W, Wang P, Wang X. Metabolomics: towards understanding traditional Chinese medicine. Planta Med. 2010;76(17):2026–2035. doi:10.1055/s-0030-1250542
  • Tong XL, Dong L, Chen L, Zhen Z. Treatment of diabetes using traditional Chinese medicine: past, present and future. Am J Chin Med. 2012;40(5):877–886. doi:10.1142/s0192415x12500656
  • Wu T, Yang M, Liu T, Yang L, Ji G. A metabolomics approach to stratify patients diagnosed with diabetes mellitus into excess or deficiency syndromes. Evid Based Complement Alternat Med. 2015;2015:350703. doi:10.1155/2015/350703
  • Sun DZ, Li SD, Liu Y, Zhang Y, Mei R, Yang MH. Differences in the origin of philosophy between Chinese medicine and western medicine: exploration of the holistic advantages of Chinese medicine. Chin J Integr Med. 2013;19(9):706–711. doi:10.1007/s11655-013-1435-5
  • Wang J, Ma Q, Li Y, et al. Research progress on traditional Chinese medicine syndromes of diabetes mellitus. Biomed Pharmacother. 2020;121:109565. doi:10.1016/j.biopha.2019.109565
  • Schnyer RN, Citkovitz C. Inter-rater reliability in traditional Chinese Medicine: challenging paradigmatic assumptions. J Altern Complement Med. 2019;25(11):1067–1073. doi:10.1089/acm.2019.0331
  • Schnyer RN, McKnight P, Conboy LA, et al. Can reliability of the Chinese medicine diagnostic process be improved? Results of a prospective randomized controlled trial. J Altern Complement Med. 2019;25(11):1103–1108. doi:10.1089/acm.2019.0260
  • Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med. 2019;17(5):321–330. doi:10.1016/s1875-5364(19)30037-8
  • Sun H, Zhang A, Wang X. Potential role of metabolomic approaches for Chinese medicine syndromes and herbal medicine. Phytother Res. 2012;26(10):1466–1471. doi:10.1002/ptr.4613
  • Jiang N, Liu HF, Li SD, et al. An integrated metabonomic and proteomic study on Kidney-Yin deficiency syndrome patients with diabetes mellitus in China. Acta Pharmacol Sin. 2015;36(6):689–698. doi:10.1038/aps.2014.169
  • DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011;34 Suppl 2(Suppl 2):S202–S209. doi:10.2337/dc11-s221
  • Beulens J, Rutters F, Rydén L, et al. Risk and management of pre-diabetes. Eur J Prev Cardiol. 2019;26(2_suppl):47–54. doi:10.1177/2047487319880041
  • Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiological Rev. 2019;99(4):1819–1875. doi:10.1152/physrev.00035.2018
  • Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–238. doi:10.1002/mas.21548
  • Jun G, Aguilar D, Evans C, Burant CF, Hanis CL. Metabolomic profiles associated with subtypes of prediabetes among Mexican Americans in Starr County, Texas, USA. Diabetologia. 2020;63(2):287–295. doi:10.1007/s00125-019-05031-4
  • Wang L, Zhang Y, Liu X, et al. Metabolite triplet in serum improves the diagnostic accuracy of prediabetes and diabetes screening. J Proteome Res. 2021;20(1):1005–1014. doi:10.1021/acs.jproteome.0c00786
  • Fikri AM, Smyth R, Kumar V, Al-Abadla Z, Abusnana S, Munday MR. Pre-diagnostic biomarkers of type 2 diabetes identified in the UAE’s obese national population using targeted metabolomics. Sci Rep. 2020;10(1):17616. doi:10.1038/s41598-020-73384-7
  • Bos MM, Noordam R, Bennett K, et al. Metabolomics analyses in non-diabetic middle-aged individuals reveal metabolites impacting early glucose disturbances and insulin sensitivity. Metabolomics. 2020;16(3):35. doi:10.1007/s11306-020-01653-7
  • Yun H, Sun L, Wu Q, et al. Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: a population-based cohort study in China. PLoS Med. 2020;17(12):e1003451. doi:10.1371/journal.pmed.1003451
  • Ottosson F, Smith E, Gallo W, Fernandez C, Melander O. Purine metabolites and carnitine biosynthesis intermediates are biomarkers for incident type 2 diabetes. J Clin Endocrinol Metab. 2019;104(10):4921–4930. doi:10.1210/jc.2019-00822
  • Chen GC, Chai JC, Yu B, et al. Serum sphingolipids and incident diabetes in a US population with high diabetes burden: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am J Clin Nutr. 2020;112(1):57–65. doi:10.1093/ajcn/nqaa114
  • Bell JA, Bull CJ, Gunter MJ, et al. Early metabolic features of genetic liability to type 2 diabetes: cohort study with repeated metabolomics across early life. Diabetes Care. 2020;43(7):1537–1545. doi:10.2337/dc19-2348
  • Vangipurapu J, Stancáková A, Smith U, Kuusisto J, Laakso M. Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5181 Finnish men. Diabetes. 2019;68(6):1353–1358. doi:10.2337/db18-1076
  • Li L, Krznar P, Erban A, et al. Metabolomics identifies a biomarker revealing in vivo loss of functional β-cell mass before diabetes onset. Diabetes. 2019;68(12):2272–2286. doi:10.2337/db19-0131
  • Lu J, Lam SM, Wan Q, et al. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic Chinese adults. Diabetes Care. 2019;42(11):2117–2126. doi:10.2337/dc19-0100
  • Gu X, Al Dubayee M, Alshahrani A, et al. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7:609806. doi:10.3389/fmolb.2020.609806
  • Diamanti K, Cavalli M, Pan G, et al. Intra- and inter-individual metabolic profiling highlights carnitine and lysophosphatidylcholine pathways as key molecular defects in type 2 diabetes. Sci Rep. 2019;9(1):9653. doi:10.1038/s41598-019-45906-5
  • Mack CI, Ferrario PG, Weinert CH, et al. Exploring the diversity of sugar compounds in healthy, prediabetic, and diabetic volunteers. Mol Nutr Food Res. 2020;64(9):e1901190. doi:10.1002/mnfr.201901190
  • Calvani R, Rodriguez-Mañas L, Picca A, et al. Identification of a circulating amino acid signature in frail older persons with type 2 diabetes mellitus: results from the Metabofrail Study. Nutrients. 2020;12(1):199. doi:10.3390/nu12010199
  • Mora-Ortiz M, Nuñez Ramos P, Oregioni A, Claus SP. NMR metabolomics identifies over 60 biomarkers associated with Type II diabetes impairment in db/db mice. Metabolomics. 2019;15(6):89. doi:10.1007/s11306-019-1548-8
  • Godzien J, Kalaska B, Adamska-Patruno E, et al. Oxidized glycerophosphatidylcholines in diabetes through non-targeted metabolomics: their annotation and biological meaning. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1120:62–70. doi:10.1016/j.jchromb.2019.04.053
  • Al-Sulaiti H, Diboun I, Agha MV, et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med. 2019;17(1):348. doi:10.1186/s12967-019-2096-8
  • Ji Y, Yao Y, Duan Y, et al. Association between urinary organophosphate flame retardant diesters and steroid hormones: a metabolomic study on type 2 diabetes mellitus cases and controls. Sci Total Environ. 2021;756:143836. doi:10.1016/j.scitotenv.2020.143836
  • Ottosson F, Smith E, Fernandez C, Melander O. Plasma metabolites associate with all-cause mortality in individuals with type 2 diabetes. Metabolites. 2020;10(8):315. doi:10.3390/metabo10080315
  • Salihovic S, Broeckling CD, Ganna A, et al. Non-targeted urine metabolomics and associations with prevalent and incident type 2 diabetes. Sci Rep. 2020;10(1):16474. doi:10.1038/s41598-020-72456-y
  • Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298–2309. doi:10.1007/s00125-019-05001-w
  • Zeng Y, Mtintsilana A, Goedecke JH, Micklesfield LK, Olsson T, Chorell E. Alterations in the metabolism of phospholipids, bile acids and branched-chain amino acids predicts development of type 2 diabetes in black South African women: a prospective cohort study. Metabolism. 2019;95:57–64. doi:10.1016/j.metabol.2019.04.001
  • Gar C, Rottenkolber M, Prehn C, Adamski J, Seissler J, Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit Rev Clin Lab Sci. 2018;55(1):21–32. doi:10.1080/10408363.2017.1414143
  • Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39(5):833–846. doi:10.2337/dc15-2251
  • Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502. doi:10.1155/2016/3898502
  • Drogan D, Dunn WB, Lin W, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61(3):487–497. doi:10.1373/clinchem.2014.228965
  • Nikiforova VJ, Giesbertz P, Wiemer J, et al. Glyoxylate, a new marker metabolite of type 2 diabetes. J Diabetes Res. 2014;2014:685204. doi:10.1155/2014/685204
  • Sas KM, Karnovsky A, Michailidis G, Pennathur S. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 2015;64(3):718–732. doi:10.2337/db14-0509
  • Sun Y, Gao HY, Fan ZY, He Y, Yan YX. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J Clin Endocrinol Metab. 2020;105(4):1000–1008. doi:10.1210/clinem/dgz240
  • Jia W. Diabetes research in China: making progress. Lancet Diabetes Endocrinol. 2017;5(1):9–10. doi:10.1016/s2213-8587(16)30094-8
  • Tian J, Jin D, Bao Q, et al. Evidence and potential mechanisms of traditional Chinese medicine for the treatment of type 2 diabetes: a systematic review and meta-analysis. Diabetes Obesity Metab. 2019;21(8):1801–1816. doi:10.1111/dom.13760
  • Luo M, Zhang Z, Lu Y, et al. Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease. Int Urol Nephrol. 2023;55(4):1001–1013. doi:10.1007/s11255-022-03326-x
  • Zou J, Xiang Q, Tan D, et al. Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition. Biomed Pharmacother. 2023;157:114002. doi:10.1016/j.biopha.2022.114002
  • Guo S, Qiu S, Cai Y, et al. Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Front Chem. 2023;11:1142287. doi:10.3389/fchem.2023.1142287
  • Lin L, Zhang S, Lin Y, et al. Untargeted metabolomics analysis on Cicer arietinium L.-induced amelioration in T2D rats by UPLC-Q-TOF-MS/MS. J Ethnopharmacol. 2020;261:113013. doi:10.1016/j.jep.2020.113013
  • Yan Z, Wu H, Zhou H, et al. Integrated metabolomics and gut microbiome to the effects and mechanisms of naoxintong capsule on type 2 diabetes in rats. Sci Rep. 2020;10(1):10829. doi:10.1038/s41598-020-67362-2
  • Pan L, Li Z, Wang Y, Zhang B, Liu G, Liu J. Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian Decoction in rats with type 2 diabetes mellitus. J Ethnopharmacol. 2020;258:112842. doi:10.1016/j.jep.2020.112842
  • Guo Q, Niu W, Li X, et al. Study on hypoglycemic effect of the drug pair of astragalus radix and dioscoreae rhizoma in T2DM rats by network pharmacology and metabonomics. Molecules. 2019;24(22):4050. doi:10.3390/molecules24224050
  • Weng J, Zhou J, Liang L, Li L. UHPLC/QTOF-MS-based metabolomics reveal the effect of melastoma dodecandrum extract in type 2 diabetic rats. Pharm Biol. 2019;57(1):807–815. doi:10.1080/13880209.2019.1693605
  • Wang L, Yang C, Song F, Liu Z, Liu S. Therapeutic effectiveness of gardenia jasminoides on type 2 diabetic rats: mass spectrometry-based metabolomics approach. Journal of Agricultural and Food Chemistry. 2020;68(36):9673–9682. doi:10.1021/acs.jafc.0c02873
  • Wang H, Huang R, Li H, Jiao L, Liu S, Wu W. Serum metabolomic analysis of the anti-diabetic effect of Ginseng berry in type II diabetic rats based on ultra high-performance liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal. 2021;196:113897. doi:10.1016/j.jpba.2021.113897
  • Li YY, Stewart DA, Ye XM, et al. A metabolomics approach to investigate kukoamine B-A potent natural product with anti-diabetic properties. Front Pharmacol. 2018;9:1575. doi:10.3389/fphar.2018.01575
  • Qiu F, Zhang YQ. Metabolic effects of mulberry branch bark powder on diabetic mice based on GC-MS metabolomics approach. Nutr Metab. 2019;16:10. doi:10.1186/s12986-019-0335-x
  • Zheng J, Guo Y, Hu B, et al. Serum metabolomic profiles reveal the impact of BuZangTongLuo formula on metabolic pathways in diabetic mice with hindlimb ischemia. J Ethnopharmacol. 2020;258:112928. doi:10.1016/j.jep.2020.112928
  • Pan LL, Sun QH, Liu GR, Guo JY. Urinary Metabolomics Study of the intervention effect of hypoglycemic decoction on type 2 diabetes mellitus rats model. Evid Based Complement Alternat Med. 2019;2019:1394641. doi:10.1155/2019/1394641
  • He WJ, Cao DM, Chen YB, et al. Explore of the beneficial effects of Huang-Lian-Jie-Du Decoction on diabetic encephalopathy in db/db mice by UPLC-Q-Orbitrap HRMS/MS based untargeted metabolomics analysis. J Pharm Biomed Anal. 2021;192:113652. doi:10.1016/j.jpba.2020.113652
  • Xiang Z, Xie H, Tong Q, et al. Revealing hypoglycemic and hypolipidemic mechanism of Xiaokeyinshui extract combination on streptozotocin-induced diabetic mice in high sucrose/high fat diet by metabolomics and lipidomics. Biomed Pharmacother. 2021;135:111219. doi:10.1016/j.biopha.2021.111219
  • Yang J, Chen H, Nie Q, Huang X, Nie S. Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. Int J Biol Macromol. 2020;164:1939–1948. doi:10.1016/j.ijbiomac.2020.08.007
  • Man S, Ma J, Yao J, et al. Systemic perturbations of key metabolites in type 2 diabetic rats treated by polyphenol extracts from Litchi chinensis seeds. Journal of Agricultural and Food Chemistry. 2017;65(35):7698–7704. doi:10.1021/acs.jafc.7b02206
  • Avogaro A, Fadini GP. Microvascular complications in diabetes: a growing concern for cardiologists. Int J Cardiol. 2019;291:29–35. doi:10.1016/j.ijcard.2019.02.030
  • Eid S, Sas KM, Abcouwer SF, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62(9):1539–1549. doi:10.1007/s00125-019-4959-1
  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6). doi:10.3390/ijms19061816
  • Matuszewski W, Baranowska-Jurkun A, Stefanowicz-Rutkowska MM, Gontarz-Nowak K, Gątarska E, Bandurska-Stankiewicz E. The safety of pharmacological and surgical treatment of diabetes in patients with diabetic retinopathy-a review. J Clin Med. 2021;10(4):705. doi:10.3390/jcm10040705
  • Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. Diabet Metabol J. 2021;45(1):11–26. doi:10.4093/dmj.2020.0217
  • Raghu ALB, Parker T, Aziz TZ, et al. Invasive electrical neuromodulation for the treatment of painful diabetic neuropathy: systematic review and meta-analysis. Neuromodulation. 2021;24(1):13–21. doi:10.1111/ner.13216
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi:10.1016/s0140-6736(09)62124-3
  • Tomita Y, Cagnone G, Fu Z, et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia. 2021;64(1):70–82. doi:10.1007/s00125-020-05309-y
  • Yun JH, Kim JM, Jeon HJ, Oh T, Choi HJ, Kim BJ. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One. 2020;15(10):e0241365. doi:10.1371/journal.pone.0241365
  • Haines NR, Manoharan N, Olson JL, D’Alessandro A, Reisz JA. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 2018;17(7):2421–2427. doi:10.1021/acs.jproteome.8b00169
  • Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects. Adv Sci. 2020;7(22):2001714. doi:10.1002/advs.202001714
  • Zhu XR, Yang FY, Lu J, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab. 2019;16:37. doi:10.1186/s12986-019-0358-3
  • Sumarriva K, Uppal K, Ma C, et al. Arginine and carnitine metabolites are altered in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60(8):3119–3126. doi:10.1167/iovs.19-27321
  • Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: an (1)H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal. 2019;174:414–421. doi:10.1016/j.jpba.2019.06.013
  • Wang H, Fang J, Chen F, et al. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor. Acta Diabetol. 2020;57(1):41–51. doi:10.1007/s00592-019-01363-0
  • Rhee SY, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics. 2018;14(7):89. doi:10.1007/s11306-018-1383-3
  • Xuan Q, Zheng F, Yu D, et al. Rapid lipidomic profiling based on ultra-high performance liquid chromatography-mass spectrometry and its application in diabetic retinopathy. Anal Bioanal Chem. 2020;412(15):3585–3594. doi:10.1007/s00216-020-02632-6
  • Wang X, Li Y, Xie M, Deng L, Zhang M, Xie X. Urine metabolomics study of Bushen Huoxue prescription on diabetic retinopathy rats by UPLC-Q-exactive orbitrap-MS. Biomed Chromatogr. 2020;34(4):e4792. doi:10.1002/bmc.4792
  • Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets. 2019;23(7):579–591. doi:10.1080/14728222.2019.1624721
  • Maqbool M, Cooper ME, Jandeleit-Dahm KAM. Cardiovascular disease and diabetic kidney disease. Semin Nephrol. 2018;38(3):217–232. doi:10.1016/j.semnephrol.2018.02.003
  • Shao M, Lu H, Yang M, et al. Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. Ann Transl Med. 2020;8(5):199. doi:10.21037/atm.2020.01.42
  • Zhang S, Li X, Luo H, Fang ZZ, Ai H. Role of aromatic amino acids in pathogeneses of diabetic nephropathy in Chinese patients with type 2 diabetes. J diabet complicat. 2020;34(10):107667. doi:10.1016/j.jdiacomp.2020.107667
  • Zhang H, Zuo JJ, Dong SS, et al. Identification of potential serum metabolic biomarkers of diabetic kidney disease: a Widely Targeted Metabolomics Study. J Diabetes Res. 2020;2020:3049098. doi:10.1155/2020/3049098
  • Tofte N, Vogelzangs N, Mook-Kanamori D, et al. Plasma metabolomics identifies markers of impaired renal function: a meta-analysis of 3089 persons with type 2 diabetes. J Clin Endocrinol Metab. 2020;105(7):2275–2287. doi:10.1210/clinem/dgaa173
  • Kwan B, Fuhrer T, Zhang J, et al. Metabolomic markers of kidney function decline in patients with diabetes: evidence from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2020;76(4):511–520. doi:10.1053/j.ajkd.2020.01.019
  • Ma T, Liu T, Xie P, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease. Life Sci. 2020;258:118160. doi:10.1016/j.lfs.2020.118160
  • Cordero-Pérez P, Sánchez-Martínez C, García-Hernández PA, Saucedo AL. [Metabolomics of the diabetic nephropathy: behind the fingerprint of development and progression indicators] Metabolómica de la nefropatía diabética: tras la huella de indicadores de desarrollo y progresión. Nefrologia. 2020;40(6):585–596. Spanish. doi:10.1016/j.nefro.2020.07.002
  • Meng X, Ma J, Kang AN, Kang SY, Jung HW, Park YK. A novel approach based on metabolomics coupled with intestinal flora analysis and network pharmacology to explain the mechanisms of action of bekhogainsam decoction in the improvement of symptoms of streptozotocin-induced diabetic nephropathy in mice. Front Pharmacol. 2020;11:633. doi:10.3389/fphar.2020.00633
  • Wang X, He Q, Chen Q, et al. Network pharmacology combined with metabolomics to study the mechanism of Shenyan Kangfu tablets in the treatment of diabetic nephropathy. J Ethnopharmacol. 2021;270:113817. doi:10.1016/j.jep.2021.113817
  • Du Y, Xu BJ, Deng X, et al. Predictive metabolic signatures for the occurrence and development of diabetic nephropathy and the intervention of Ginkgo biloba leaves extract based on gas or liquid chromatography with mass spectrometry. J Pharm Biomed Anal. 2019;166:30–39. doi:10.1016/j.jpba.2018.12.017
  • Guo JC, Pan HC, Yeh BY, et al. Associations between using Chinese herbal medicine and long-term outcome among pre-dialysis diabetic nephropathy patients: a Retrospective Population-Based Cohort Study. Front Pharmacol. 2021;12:616522. doi:10.3389/fphar.2021.616522
  • Li CL, Liu B, Wang ZY, et al. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol. 2020;139:98–112. doi:10.1016/j.yjmcc.2020.01.009
  • Yin Z, Wang X, Yang X, Chen Y, Duan Y, Han J. Salvia miltiorrhiza in anti-diabetic angiopathy. Curr Mol Pharmacol. 2021;14(6):960–974. doi:10.2174/1874467214999210111222918
  • Xiang X, Cai HD, Su SL, et al. Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition. Pharmacol Res. 2019;139:26–40. doi:10.1016/j.phrs.2018.10.030
  • Selvarajah D, Kar D, Khunti K, et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019;7(12):938–948. doi:10.1016/s2213-8587(19)30081-6
  • Mizukami H, Osonoi S, Takaku S, et al. Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway. Brain Comm. 2020;2(2):fcaa168. doi:10.1093/braincomms/fcaa168
  • Fridman V, Zarini S, Sillau S, et al. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J diabet complicat. 2021;35(4):107852. doi:10.1016/j.jdiacomp.2021.107852
  • Durán AM, Salto LM, Câmara J, et al. Effects of omega-3 polyunsaturated fatty-acid supplementation on neuropathic pain symptoms and sphingosine levels in Mexican-Americans with type 2 diabetes. Diabetes Metab Syndr Obes. 2019;12:109–120. doi:10.2147/dmso.S187268
  • Lin HT, Cheng ML, Lo CJ, et al. (1)H Nuclear Magnetic Resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy. J Clin Med. 2019;8(6). doi:10.3390/jcm8060874
  • Liang X, Cui L, Guo S. [Clinical study on jinmaitong composita on diabetic peripheral neuropathy]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi. 1999;19(9):517–519. Chinese.
  • Song W, Jiang W, Wang C, et al. Jinmaitong, a traditional Chinese compound prescription, ameliorates the streptozocin-induced diabetic peripheral neuropathy rats by increasing sciatic nerve IGF-1 and IGF-1R expression. Front Pharmacol. 2019;10:255. doi:10.3389/fphar.2019.00255
  • Zhang Q, Song W, Liang X, et al. A metabolic insight into the neuroprotective effect of Jin-Mai-Tong (JMT) decoction on diabetic rats with peripheral neuropathy using untargeted metabolomics strategy. Front Pharmacol. 2020;11:221. doi:10.3389/fphar.2020.00221
  • Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33(4):791–803.e7. doi:10.1016/j.cmet.2020.11.017
  • Guo R, Luo X, Liu J, Liu L, Wang X, Lu H. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol Res. 2020;152:104627. doi:10.1016/j.phrs.2020.104627
  • Sha Q, Lyu J, Zhao M, Li H, Guo M, Sun Q. Multi-omics analysis of diabetic nephropathy reveals potential new mechanisms and drug targets. Front Genetics. 2020;11:616435. doi:10.3389/fgene.2020.616435
  • Darmayanti S, Lesmana R, Meiliana A, Abdulah R. Genomics, proteomics and metabolomics approaches for predicting diabetic nephropathy in type 2 diabetes mellitus patients. Curr Diabetes Rev. 2020. doi:10.2174/1573399817666210101105253
  • Chen D, Zhao X, Sui Z, et al. A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranostics. 2020;10(5):2029–2046. doi:10.7150/thno.41106
  • Chen ZZ, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020;126(11):1613–1627. doi:10.1161/circresaha.120.315898
  • Yang M, Lao L. Emerging applications of metabolomics in Traditional chinese medicine treating hypertension: biomarkers, pathways and more. Front Pharmacol. 2019;10:158. doi:10.3389/fphar.2019.00158
  • Kikuchi K, Saigusa D, Kanemitsu Y, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019;10(1):1835. doi:10.1038/s41467-019-09735-4
  • Vangipurapu J, Fernandes Silva L, Kuulasmaa T, Smith U, Laakso M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care. 2020;43(6):1319–1325. doi:10.2337/dc19-2533
  • Hameed A, Mojsak P, Buczynska A, Suleria HAR, Kretowski A, Ciborowski M. Altered metabolome of lipids and amino acids species: a source of early signature biomarkers of T2DM. J Clin Med. 2020;9(7):2257. doi:10.3390/jcm9072257
  • Li J, Li R, Li N, et al. Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. J Pharm Biomed Anal. 2018;158:451–460. doi:10.1016/j.jpba.2018.06.024
  • Thingholm LB, Rühlemann MC, Koch M, et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe. 2019;26(2):252–264.e10. doi:10.1016/j.chom.2019.07.004
  • Cani PD. Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol. 2019;15(2):69–70. doi:10.1038/s41574-018-0143-9
  • Zhao L, Lou H, Peng Y, Chen S, Fan L, Li X. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract. 2020;169:108418. doi:10.1016/j.diabres.2020.108418
  • Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712. doi:10.1016/j.metabol.2021.154712
  • Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–743. doi:10.1016/j.chom.2016.04.017
  • Lin H, He QY, Shi L, Sleeman M, Baker MS, Nice EC. Proteomics and the microbiome: pitfalls and potential. Expert Rev Proteomics. 2019;16(6):501–511. doi:10.1080/14789450.2018.1523724
  • Peng W, Huang J, Yang J, et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front Microbiol. 2019;10:3141. doi:10.3389/fmicb.2019.03141
  • Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569(7758):663–671. doi:10.1038/s41586-019-1236-x