111
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management

, &
Pages 4147-4156 | Received 06 Oct 2023, Accepted 08 Dec 2023, Published online: 20 Dec 2023

References

  • Coronavirus disease (covid-19) situation reports (no date) World Health Organization. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed December 17, 2023.
  • Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862. doi:10.1136/bmj.m3862
  • Kim L, Garg S, O’Halloran A, et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin Infect Dis. 2021;72(9):e206–e14. doi:10.1093/cid/ciaa1012
  • Hippisley-Cox J, Coupland CA, Mehta N, et al. Risk prediction of covid-19 related death and hospital admission in adults after covid-19 vaccination: national prospective cohort study. BMJ. 2021;374:n2244. doi:10.1136/bmj.n2244
  • Thakur B, Dubey P, Benitez J, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep. 2021;11(1):8562. doi:10.1038/s41598-021-88130-w
  • Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782–792. doi:10.1016/S2213-8587(20)30238-2
  • Batabyal R, Freishtat N, Hill E, Rehman M, Freishtat R, Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int J Obes. 2021;45(6):1163–1169. doi:10.1038/s41366-021-00804-7
  • Costa FF, Rosario WR, Ribeiro Farias AC, de Souza RG, Duarte Gondim RS, Barroso WA. Metabolic syndrome and COVID-19: an update on the associated comorbidities and proposed therapies. Diabetes Metab Syndr. 2020;14(5):809–814. doi:10.1016/j.dsx.2020.06.016
  • Dhama K, Nainu F, Frediansyah A, et al. Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies. J Infect Public Health. 2023;16(1):4–14. doi:10.1016/j.jiph.2022.11.024
  • Gao M, Piernas C, Astbury NM, et al. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021;9(6):350–359. doi:10.1016/S2213-8587(21)00089-9
  • Obesity and overweight (no date) World Health Organization. Available from: https://www.who.int/zh/news-room/fact-sheets/detail/obesity-and-overweight. Accessed December 17, 2023.
  • Anderson MR, Shashaty MGS. Impact of Obesity in Critical Illness. Chest. 2021;160(6):2135–2145. doi:10.1016/j.chest.2021.08.001
  • de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the oxford royal college of general practitioners research and surveillance centre primary care network: a cross-sectional study. Lancet Infect Dis. 2020;20(9):1034–1042. doi:10.1016/S1473-3099(20)30371-6
  • Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128. doi:10.1111/obr.13128
  • Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. J Med Virol. 2021;93(5):2662–2674. doi:10.1002/jmv.26677
  • Juthani PV, Gupta A, Borges KA, et al. Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infect Dis. 2021;21(11):1485–1486. doi:10.1016/S1473-3099(21)00558-2
  • Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135–149. doi:10.1038/s41574-020-00462-1
  • Huang Y, Lu Y, Huang YM, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism. 2020;113:154378. doi:10.1016/j.metabol.2020.154378
  • Foldi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: a systematic review and meta-analysis. Obes Rev. 2020;21(10):e13095. doi:10.1111/obr.13095
  • Poly TN, Islam MM, Yang HC, et al. Obesity and mortality among patients diagnosed with COVID-19: a systematic review and meta-analysis. Front Med. 2021;8:620044. doi:10.3389/fmed.2021.620044
  • Soeroto AY, Soetedjo NN, Purwiga A, et al. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(6):1897–1904. doi:10.1016/j.dsx.2020.09.029
  • Malik P, Patel U, Patel K, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients-A systematic review and meta-analysis. J Med Virol. 2021;93(2):1188–1193. doi:10.1002/jmv.26555
  • Yang Y, Wang L, Liu J, Fu S, Zhou L, Wang Y. Obesity or increased body mass index and the risk of severe outcomes in patients with COVID-19: a protocol for systematic review and meta-analysis. Medicine. 2022;101(1):e28499. doi:10.1097/MD.0000000000028499
  • Bridger Staatz C, Bann D, Ploubidis GB, Goodman A, Silverwood RJ. Age of first overweight and obesity, COVID-19 and long COVID in two British birth cohorts. J Epidemiol Glob Health. 2023;13(1):140–153. doi:10.1007/s44197-023-00093-5
  • Diamantis DV, Karatzi K, Kantaras P, et al. Prevalence and socioeconomic correlates of adult obesity in Europe: the Feel4Diabetes study. Int J Environ Res Public Health. 2022;19(19):12572. doi:10.3390/ijerph191912572
  • van Diepen RJ, van Erpecum CL, Tabak D, van Zon SKR, Bültmann U, Smidt N. Neighborhood socioeconomic differences in BMI: the role of fast-food outlets and physical activity facilities. Obesity. 2023;31(2):506–514. doi:10.1002/oby.23617
  • Allen J. The indirect effects of food insecurity on obesogenic environments. Front Public Health. 2023;10:1052957. doi:10.3389/fpubh.2022.1052957
  • De Lorenzo A, Cenname G, Marchetti M, et al. Social inequalities and nutritional disparities: the link between obesity and COVID-19. Eur Rev Med Pharmacol Sci. 2022;26(1):320–339. doi:10.26355/eurrev_202201_27784
  • Marques MB, Langouche L. Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit Care Med. 2013;41(1):317–325. doi:10.1097/CCM.0b013e318265f21c
  • Heymsfield SB, Wadden TA, Longo DL. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–266. doi:10.1056/NEJMra1514009
  • Park JB, Kim DH, Lee H, et al. Obesity and metabolic health status are determinants for the clinical expression of hypertrophic cardiomyopathy. Eur J Prev Cardiol. 2020;27(17):1849–1857. doi:10.1177/2047487319889714
  • Kayser B, Verges S. Hypoxia, energy balance, and obesity: an update. Obes Rev. 2021;22(Suppl 2):e13192.
  • Zhang S, Zhang J, Wang C, et al. COVID19 and ischemic stroke: mechanisms of hypercoagulability (Review). Int J Mol Med. 2021;47(3). doi:10.3892/ijmm.2021.4854
  • Onder G, Palmieri L, Vanacore N, Giuliano M, Brusaferro S; Italian National Institute of Health C-MG. Nonrespiratory complications and obesity in patients dying with COVID-19 in Italy. Obesity. 2021;29(1):20–23. doi:10.1002/oby.23007
  • Nimkar A, Naaraayan A, Hasan A, et al. Incidence and risk factors for acute kidney injury and its effect on mortality in patients hospitalized from COVID-19. Mayo Clin Proc Innov Qual Outcomes. 2020;4(6):687–695. doi:10.1016/j.mayocpiqo.2020.07.003
  • Xie J, Prats-Uribe A, Feng Q, et al. Clinical and genetic risk factors for acute incident venous thromboembolism in ambulatory patients with COVID-19. JAMA Intern Med. 2022;182(10):1063. doi:10.1001/jamainternmed.2022.3858
  • Muscogiuri G, Barrea L, Verde L, Vetrani C, Savastano S, Colao A. The ”identikit” of subject with obesity and COVID-19 vaccine breakthrough. EXCLI J. 2022;21:687–694. doi:10.17179/excli2022-4864
  • Watanabe M, Balena A, Tuccinardi D, et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465. doi:10.1002/dmrr.3465
  • Epsi NJ, Richard SA, Laing ED, et al. Clinical, immunological, and virological SARS-CoV-2 phenotypes in obese and nonobese military health system beneficiaries. J Infect Dis. 2021;224(9):1462–1472. doi:10.1093/infdis/jiab396
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389
  • Maltezou HC, Raftopoulos V, Vorou R, et al. Association between upper respiratory tract viral load, comorbidities, disease severity, and outcome of patients with SARS-CoV-2 infection. J Infect Dis. 2021;223(7):1132–1138. doi:10.1093/infdis/jiaa804
  • Freuer D, Linseisen J, Meisinger C. Impact of body composition on COVID-19 susceptibility and severity: a two-sample multivariable Mendelian randomization study. Metabolism. 2021;118:154732. doi:10.1016/j.metabol.2021.154732
  • Behazin N, Jones SB, Cohen RI, Loring SH. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;108(1):212–218. doi:10.1152/japplphysiol.91356.2008
  • Chandarana H, Dane B, Mikheev A, Taffel MT, Feng Y, Rusinek H. Visceral adipose tissue in patients with COVID-19: risk stratification for severity. Abdom Radiol. 2021;46(2):818–825. doi:10.1007/s00261-020-02693-2
  • Pepin JL, Timsit JF, Tamisier R, Borel JC, Levy P, Jaber S. Prevention and care of respiratory failure in obese patients. Lancet Respir Med. 2016;4(5):407–418. doi:10.1016/S2213-2600(16)00054-0
  • Busetto L, Enzi G, Inelmen EM, et al. Obstructive sleep apnea syndrome in morbid obesity: effects of intragastric balloon. Chest. 2005;128(2):618–623. doi:10.1378/chest.128.2.618
  • Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160(3):883–886. doi:10.1164/ajrccm.160.3.9902058
  • Steier J, Jolley CJ, Seymour J, Roughton M, Polkey MI, Moxham J. Neural respiratory drive in obesity. Thorax. 2009;64(8):719–725. doi:10.1136/thx.2008.109728
  • Masa JF, Pepin JL, Borel JC, Mokhlesi B, Murphy PB, Sanchez-Quiroga MA. Obesity hypoventilation syndrome. Eur Respir Rev. 2019;28(151):180097. doi:10.1183/16000617.0097-2018
  • Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–215. doi:10.1016/S2213-8587(14)70134-2
  • Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13(8):707–712. doi:10.1038/ni.2343
  • Morais AHA, Passos TS, de Lima Vale SH, da Silva Maia JK, Maciel BLL. Obesity and the increased risk for COVID-19: mechanisms and nutritional management. Nutr Res Rev. 2021;34(2):209–221. doi:10.1017/S095442242000027X
  • Moreno-Fernandez J, Ochoa J, Ojeda ML, Nogales F, Carreras O, Díaz-Castro J. Inflammation and oxidative stress, the links between obesity and COVID-19: a narrative review. J Physiol Biochem. 2022;78(3):581–591. doi:10.1007/s13105-022-00887-4
  • Bahr I, Spielmann J, Quandt D, Kielstein H. Obesity-associated alterations of natural killer cells and immunosurveillance of cancer. Front Immunol. 2020;11:245. doi:10.3389/fimmu.2020.00245
  • O’Shea D, Corrigan M, Dunne MR, et al. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection. Int J Obes. 2013;37(11):1510–1513. doi:10.1038/ijo.2013.16
  • Wang Z, Aguilar EG, Luna JI, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25(1):141–151. doi:10.1038/s41591-018-0221-5
  • Farnsworth CW, Schott EM, Benvie A, et al. Exacerbated staphylococcus aureus foot infections in obese/diabetic mice are associated with impaired germinal center reactions, Ig class switching, and humoral immunity. J Immunol. 2018;201(2):560–572. doi:10.4049/jimmunol.1800253
  • Al Heialy S, Hachim MY, Senok A, et al. Regulation of angiotensin- converting Enzyme 2 in obesity: implications for COVID-19. Front Physiol. 2020;11:555039. doi:10.3389/fphys.2020.555039
  • Al-Benna S. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes Med. 2020;19:100283. doi:10.1016/j.obmed.2020.100283
  • Makhoul E, Aklinski JL, Miller J, et al. A review of COVID-19 in relation to metabolic syndrome: obesity, hypertension, diabetes, and dyslipidemia. Cureus. 2022;14(7):e27438. doi:10.7759/cureus.27438
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–35 e19. doi:10.1016/j.cell.2020.04.035
  • Hennighausen L, Lee HK. Activation of the SARS-CoV-2 receptor Ace2 by cytokines through pan JAK-STAT enhancers. SSRN. 2020;3601827. doi:10.2139/ssrn.3601827
  • Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2012;2(1):799. doi:10.1038/srep00799
  • Amen OM, Sarker SD, Ghildyal R, Arya A. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: therapeutic and molecular approach. Front Pharmacol. 2019;10:977. doi:10.3389/fphar.2019.00977
  • Ha DP, Van Krieken R, Carlos AJ, Lee AS. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect. 2020;81(3):452–482. doi:10.1016/j.jinf.2020.06.017
  • Michalia M, Kompoti M, Koutsikou A, et al. Diabetes mellitus is an independent risk factor for ICU-acquired bloodstream infections. Intensive Care Med. 2009;35(3):448–454. doi:10.1007/s00134-008-1288-0
  • Wu J, Huang J, Zhu G, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care. 2020;8(1):e001476. doi:10.1136/bmjdrc-2020-001476
  • Yang P, Wang N, Wang J, Luo A, Gao F, Tu Y. Admission fasting plasma glucose is an independent risk factor for 28-day mortality in patients with COVID-19. J Med Virol. 2021;93(4):2168–2176. doi:10.1002/jmv.26608
  • Bode B, Garrett V, Messler J, et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813–821. doi:10.1177/1932296820924469
  • Mehdipour AR, Hummer G. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc Natl Acad Sci U S A. 2021;118(19):e2100425118.
  • Laviada-Molina HA, Leal-Berumen I, Rodriguez-Ayala E, Bastarrachea RA. Working hypothesis for glucose metabolism and sars-cov-2 replication: interplay Between the Hexosamine Pathway and Interferon RF5 triggering hyperinflammation. Role of BCG vaccine? Front Endocrinol. 2020;11:514. doi:10.3389/fendo.2020.00514
  • Ni SJ, Gao JL, Shen SS. 倪苏婕,高健林,沈树泉.肥胖和高甘油三酯血症与重症新型冠状病毒肺炎及其死亡相关联的临床证据及可能机制 [Obesity and hypertriglyceridemia: high risks for disease severity and mortality in COVID-19 patients]. Sheng Li Xue Bao. 2022;74(5):783–791. Chinese.
  • Qin C, Minghan H, Ziwen Z, Yukun L. Alteration of lipid profile and value of lipids in the prediction of the length of hospital stay in COVID-19 pneumonia patients. Food Sci Nutr. 2020;8(11):6144–6152. doi:10.1002/fsn3.1907
  • Zhong P, Wang Z, Du Z. Serum triglyceride levels and related factors as prognostic indicators in COVID-19 patients: a retrospective study. Immun Inflamm Dis. 2021;9(3):1055–1060. doi:10.1002/iid3.469
  • Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80(1):88–95. doi:10.1136/annrheumdis-2020-218323
  • Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313–1326. doi:10.1161/CIRCRESAHA.116.307708
  • Samavati L, Uhal BD. ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317. doi:10.3389/fcimb.2020.00317
  • Sanchis-Gomar F, Lavie CJ, Mehra MR, Henry BM, Lippi G. Obesity and outcomes in COVID-19: when an epidemic and pandemic collide. Mayo Clin Proc. 2020;95(7):1445–1453. doi:10.1016/j.mayocp.2020.05.006
  • Mori J, Patel VB, Ramprasath T, et al. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol. 2014;306(8):F812–F821. doi:10.1152/ajprenal.00655.2013
  • Patel VB, Mori J, McLean BA, et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65(1):85–95. doi:10.2337/db15-0399
  • Yasue S, Masuzaki H, Okada S, et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23(4):425–431. doi:10.1038/ajh.2009.263
  • Larsson A, Lipcsey M, Hultstrom M, Frithiof R, Eriksson M. Plasma leptin is increased in intensive care patients with COVID-19-an investigation performed in the PronMed-Cohort. Biomedicines. 2021;10(1):4. doi:10.3390/biomedicines10010004
  • Di Filippo L, De Lorenzo R, Sciorati C, et al. Adiponectin to leptin ratio reflects inflammatory burden and survival in COVID-19. Diabetes Metab. 2021;47(6):101268. doi:10.1016/j.diabet.2021.101268
  • Jung CH, Kim MS. Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res. 2013;36(2):201–207. doi:10.1007/s12272-013-0020-y
  • Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. doi:10.3390/ijms18061321
  • Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4):1219.
  • Kearns SM, Ahern KW, Patrie JT, Horton WB, Harris TE, Kadl A. Reduced adiponectin levels in patients with COVID-19 acute respiratory failure: a case-control study. Physiol Rep. 2021;9(7):e14843. doi:10.14814/phy2.14843
  • Zeigler Z. COVID-19 self-quarantine and weight gain risk factors in adults. Curr Obes Rep. 2021;10(3):423–433. doi:10.1007/s13679-021-00449-7
  • Ho FK, Celis-Morales CA, Gray SR, et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: results from a UK Biobank prospective cohort study. BMJ Open. 2020;10(11):e040402. doi:10.1136/bmjopen-2020-040402
  • Lino RS, Silva MSP, Jesus DS, et al. Molecular aspects of COVID-19 and its relationship with obesity and physical activity: a narrative review. Sao Paulo Med J. 2023;141(1):78–86. doi:10.1590/1516-3180.2021.1038.r1.06072022
  • Sattar N, Valabhji J. Obesity as a risk factor for severe COVID-19: summary of the best evidence and implications for health care. Curr Obes Rep. 2021;10(3):282–289. doi:10.1007/s13679-021-00448-8
  • Dissanayake H. COVID-19 and metabolic syndrome. Best Pract Res Clin Endocrinol Metab. 2023;37(4):101753. doi:10.1016/j.beem.2023.101753
  • Dohet F, Loap S, Menzel A, et al. Obesity considerations during the COVID-19 outbreak. Int J Vitam Nutr Res. 2022;92(1):67–79. doi:10.1024/0300-9831/a000695
  • Hauner H. The COVID-19 pandemic: challenges for obesity management - a call for providing reliable data and solutions. Obes Facts. 2022;15(3):303–304. doi:10.1159/000524424
  • Melamed OC, Selby P, Taylor VH. Mental health and obesity during the COVID-19 pandemic. Curr Obes Rep. 2022;11(1):23–31. doi:10.1007/s13679-021-00466-6