129
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Tryptophan Prevents the Development of Non-Alcoholic Fatty Liver Disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4195-4204 | Received 11 Oct 2023, Accepted 18 Dec 2023, Published online: 22 Dec 2023

References

  • Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol. 2023;324(2):G99–G114. doi:10.1152/ajpgi.00168.2022
  • Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116–141. doi:10.1016/j.freeradbiomed.2020.02.025
  • Pérez-Carreras M, Del Hoyo P, Martín MA, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38(4):999–1007. doi:10.1053/jhep.2003.50398
  • Lee K, Haddad A, Osme A, et al. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. Mol Cell Proteomics. 2018;17(12):2371–2386. doi:10.1074/mcp.RA118.000961
  • Golubeva JA, Sheptulina AF, Yafarova AA, Mamutova EM, Kiselev AR, Drapkina OM. Reduced quality of life in patients with non-alcoholic fatty liver disease may be associated with depression and fatigue. Healthcare. 2022;10(9):1699. doi:10.3390/healthcare10091699
  • Shea S, Lionis C, Kite C, et al. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress. Biomedicines. 2021;9(11):1697. doi:10.3390/biomedicines9111697
  • Lazarus JV, Colombo M, Cortez-Pinto H, et al. NAFLD - sounding the alarm on a silent epidemic. Nat Rev Gastroenterol Hepatol. 2020;17(7):377–379. doi:10.1038/s41575-020-0315-7
  • Rinaldi L, Pafundi PC, Galiero R, et al. Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants. 2021;10:270. doi:10.3390/antiox10020270
  • Iqbal U, Perumpail BJ, Akhtar D, Kim D, Ahmed A. The epidemiology, risk profiling and diagnostic challenges of nonalcoholic fatty liver disease. Medicines. 2019;6(1):41. doi:10.3390/medicines6010041
  • Schiavo L, Busetto L, Cesaretti M, Zelber-Sagi S, Deutsch L, Iannelli A. Nutritional issues in patients with obesity and cirrhosis. World J Gastroenterol. 2018;24(30):3330–3346. doi:10.3748/wjg.v24.i30.3330
  • Mantovani A, Dalbeni A. Treatments for NAFLD: state of art. Int J Mol Sci. 2021;22(5):2350. doi:10.3390/ijms22052350
  • Głuszyńska P, Lemancewicz D, Dzięcioł JB, Razak Hady H. Non-alcoholic fatty liver disease (NAFLD) and bariatric/metabolic surgery as its treatment option: a review. J Clin Med. 2021;10(24):5721. doi:10.3390/jcm10245721
  • Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18(5):379–401. doi:10.1038/s41573-019-0016-5
  • Shipelin VA, Trusov NV, Apryatin SA, et al. Effects of tyrosine and tryptophan in rats with diet-induced obesity. Int J Mol Sci. 2021;22:24–29. doi:10.3390/ijms22052429
  • Chen J, Vitetta L, Henson JD, Hall S. Intestinal dysbiosis, the tryptophan pathway and nonalcoholic steatohepatitis. Int J Tryptophan Res. 2022;15:11786469211070533. doi:10.1177/11786469211070533
  • Sun P, Wang M, Liu YX, et al. High-fat diet-disturbed gut microbiota-colonocyte interactions contribute to dysregulating peripheral tryptophan-kynurenine metabolism. Microbiome. 2023;11(1):154. doi:10.1186/s40168-023-01606-x
  • Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-derived tryptophan catabolites, kidney disease and gut inflammation. Toxins. 2022;14(9):645. doi:10.3390/toxins14090645
  • Hezaveh K, Shinde RS, Klötgen A, et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 2022;55(2):324–340.e8. doi:10.1016/j.immuni.2022.01.006
  • Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–477. doi:10.1038/nrn3257
  • Cussotto S, Delgado I, Anesi A, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol. 2020;11:557. doi:10.3389/fimmu.2020.00557
  • Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. Cells. 2022;11(16):2607. doi:10.3390/cells11162607
  • Celinski K, Konturek PC, Slomka M, et al. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease--14 months follow up. J Physiol Pharmacol. 2014;65(1):75–82.
  • Ritze Y, Bárdos G, Hubert A, Böhle M, Bischoff SC. Effect of tryptophan supplementation on diet-induced non-alcoholic fatty liver disease in mice. Br J Nutr. 2014;112(1):1–7. doi:10.1017/S0007114514000440
  • Osawa Y, Kanamori H, Seki E, et al. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem. 2011;286(40):34800–34808. doi:10.1074/jbc.M111.235473
  • Янко РВ, Зінченко АС, Чака ОГ, Левашов МІ. Спосіб моделювання аліментарного жирового гепатозу у лабораторних щурів. Патент України № 150511. 2022 лютого 23. [Yanko RV, Zinchenko AS, Chaka OG, Levashov MI. Method of modeling alimentary fatty liver disease in laboratory rats. Ukraine patent No. 150511. 2022 Feb 23]. Ukraine.
  • Badawy AA, Bano S. Tryptophan metabolism in rat liver after administration of tryptophan, kynurenine metabolites, and kynureninase inhibitors. Int J Tryptophan Res. 2016;9:51–65. doi:10.4137/IJTR.S38190
  • Ayinde TO, Olayaki LA, Ojulari LS, Oluwasola A. Hepatoprotective effect of tryptophan in carbontetrachloride-induced hepatotoxicity in male Wistar rats. Int J Basic Appl Physiol. 2021;10(2):25–30.
  • Rehfeld A, Nylander M, Karnov K. Histological methods. In: Compendium of Histology. Cham: Springer; 2017. doi:10.1007/978-3-319-41873-5_2
  • Mamontov I, Ivakhno I, Tamm T, Panasenko V, Padalko V, Zulfugarov I. Morphometric parameters of hepatocytes in experimental complete extrahepatic bile duct obstruction. ScienceRise. 2020;1(34):51–56. doi:10.15587/2519-4798.2020.193845
  • Yanko RV, Chaka OG, Levashov MI. Influence of methionine on morphofunctional changes of rat liver parenchyma. Fiziol Zh. 2020;66(5):38–45. doi:10.15407/fz66.05.038
  • Reitman S, Frankel S. The structure and function of subcellular components. Am J Clin Pathol. 1957;28:56. doi:10.1093/ajcp/28.1.56
  • Swanson MA. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950;184(2):647–659.
  • Singer TP, Kearney EB, Bernath P. Studies on succinic dehydrogenase. Isolation and properties of the dehydrogenase from beef heart. J Biol Chem. 1956;223:599–613. doi:10.1016/S0021-9258(18)65059-8
  • Sumbalova Z, Fontana M, Krumschnabel G. Isolation of rat liver mitochondria. Mitochondr Physiol Network. 2016;20(08(02)):1–2.
  • Chance B, Williams G. Respiratory enzymes in oxidative phosphorylation. The steady state. J Biol Chem. 1955;217:409–427. doi:10.1016/S0021-9258(19)57191-5
  • Shchelykalina SP, Nikolaev DV, Kolesnikov VA, Korostylev KA, Starunova OA. Technology of two-dimensional bioimpedance analysis of the human body composition. J Electr Bioimpedance. 2021;12(1):17–25. doi:10.2478/joeb-2021-0004
  • Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors. 2014;14(6):10895–10928. doi:10.3390/s140610895
  • Hanna DJ, Jamieson ST, Lee CS, et al. Bioelectrical impedance analysis in managing sarcopenic obesity in NAFLD. Obes Sci Pract. 2021;7(5):629–645. doi:10.1002/osp4.509
  • Karschau J, Scholich A, Wise J, et al. Resilience of three-dimensional sinusoidal networks in liver tissue. PLoS Comput Biol. 2020;16(6):e1007965. doi:10.1371/journal.pcbi.1007965
  • Dubois ML, Boisvert FM. The nucleolus: structure and function. Funct Nucleus. 2016;23:29–49. doi:10.1007/978-3-319-38882-3_2
  • Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147(4):765–783.e4. doi:10.1053/j.gastro.2014.07.018
  • Wang W, Liu L, Tian Z, Han T, Sun C, Li Y. Dietary tryptophan and the risk of metabolic syndrome: total effect and mediation effect of sleep duration. Nat Sci Sleep. 2021;13:2141–2151. doi:10.2147/NSS.S337171
  • Lian CY, Zhai ZZ, Li ZF, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact. 2020;330:109199. doi:10.1016/j.cbi.2020.109199
  • Akiba Y, Takahashi K, Horiguchi M, Ohtani H, Saitoh S, Ohkawara H. L-Tryptophan alleviates fatty liver and modifies hepatic microsomal mixed function oxidase in laying hens. Comp Biochem Physiol Comp Physiol. 1992;102(4):769–774. doi:10.1016/0300-9629(92)90738-c
  • Mangge H, Summers KL, Meinitzer A, et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome. Obesity. 2014;22(1):195–201. doi:10.1002/oby.20491
  • van Galen KA, Ter Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev. 2021;22(7):e13210. doi:10.1111/obr.13210
  • Sumara G, Sumara O, Kim JK, Karsenty G. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab. 2012;16(5):588–600. doi:10.1016/j.cmet.2012.09.014
  • Guan Q, Wang Z, Cao J, Dong Y, Chen Y. Mechanisms of melatonin in obesity: a review. Int J Mol Sci. 2021;23(1):218. doi:10.3390/ijms23010218
  • Ou TH, Tung YT, Yang TH, Chien YW. Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients. 2019;11:748. doi:10.3390/nu11040748
  • Sato K, Meng F, Francis H, et al. Melatonin and circadian rhythms in liver diseases: functional roles and potential therapies. J Pineal Res. 2020;68:e12639. doi:10.1111/jpi.12639
  • Zhou H, Du W, Li Y, et al. Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. 2018:64. doi:10.1111/jpi.12450
  • Watanabe H, Akasaka D, Ogasawara H, et al. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinolog. 2010;151:4776–4786. doi:10.1210/en.2009-1349
  • Cichoz-Lach H, Celinski K, Konturek PC, Konturek SJ, Slomka M. The effects of L-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis. J Physiol Pharmacol. 2010;61(5):577–580.
  • Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:8713–8742. doi:10.3390/ijms15058713
  • Staňková P, Kučera O, Peterová E, et al. Western diet decreases the liver mitochondrial oxidative flux of succinate: insight from a murine NAFLD model. Int J Mol Sci. 2021;22(13):6908. doi:10.3390/ijms22136908
  • Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion. 2010;10(4):393–401. doi:10.1016/j.mito.2010.03.001
  • van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362(Pt 3):513–532. doi:10.1042/0264-6021:3620513
  • Nayak BN, Buttar HS. Evaluation of the antioxidant properties of tryptophan and its metabolites in in vitro assay. J Complement Integr Med. 2016;13(2):129–136. doi:10.1515/jcim-2015-0051
  • Zhao F, Liu ZQ, Wu D. Antioxidative effect of melatonin on DNA and erythrocytes against free-radical-induced oxidation. Chem Phys Lipids. 2008;151:77–84. doi:10.1016/j.chemphyslip.2007.10.002
  • Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008;7:26. doi:10.1186/1475-2891-7-26
  • Choi JW, Yoo JJ, Kim SG, Kim YS. Bioelectrical impedance analysis can be an effective tool for screening fatty liver in patients with suspected liver disease. Healthcare. 2022;10(11):2268. doi:10.3390/healthcare10112268
  • Schloerb PR, Forster J, Delcore R, Kindscher JD. Bioelectrical impedance in the clinical evaluation of liver disease. Am J Clin Nutr. 1996;64(3):510S–514S. doi:10.1093/ajcn/64.3.510S