46
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Plasma Asprosin Concentrations are Associated with Progression of Diabetic Kidney Disease

, , , & ORCID Icon
Pages 2235-2242 | Received 20 Nov 2023, Accepted 09 May 2024, Published online: 05 Jun 2024

References

  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151
  • Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, Egido J. Therapeutic approaches to diabetic nephropathy--beyond the RAS. Nat Rev Nephrol. 2014;10(6):325–346. doi:10.1038/nrneph.2014.74
  • Rayego-Mateos S, Morgado-Pascual JL, Opazo-Rios L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci. 2020;21(11):3798. doi:10.3390/ijms21113798
  • Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–2045. doi:10.2215/CJN.11491116
  • Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159–1169. doi:10.1161/01.RES.0000103862.26506.3D
  • Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333–2340. doi:10.1172/JCI72271
  • Cai -Y-Y, Zhang H-B, Fan C-X, et al. Renoprotective effects of brown adipose tissue activation in diabetic mice. J dia. 2019;11(12):958–970. doi:10.1111/1753-0407.12938
  • Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016;165(3):566–579. doi:10.1016/j.cell.2016.02.063
  • Wang Y, Qu H, Xiong X, et al. Plasma asprosin concentrations are increased in individuals with glucose dysregulation and correlated with insulin resistance and first-phase insulin secretion. Med Inflam. 2018;2018:9471583. doi:10.1155/2018/9471583
  • Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi:10.1002/jcp.28694
  • Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mole cell endo. 2019;486:96–104. doi:10.1016/j.mce.2019.03.001
  • Qu H, Qiu Y, Wang Y, Liao Y, Zheng Y, Zheng H. Plasma fetuin-B concentrations are associated with insulin resistance and first-phase glucose-stimulated insulin secretion in individuals with different degrees of glucose tolerance. Dia Metabo. 2018;44(6):488–492. doi:10.1016/j.diabet.2018.02.003
  • Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Internal Med. 2009;150(9):604–612. doi:10.7326/0003-4819-150-9-200905050-00006
  • Miao T, Huang B, He N, et al. Decreased Plasma Maresin 1 Concentration Is Associated with Diabetic Foot Ulcer. Med Inflam. 2020;2020:4539035. doi:10.1155/2020/4539035
  • Zheng H, Whitman SA, Wu W, et al. Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy. Diabetes. 2011;60(11):3055–3066. doi:10.2337/db11-0807
  • Zheng Y, Qu H, Xiong X, et al. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Contributes to Hepatic Steatosis. Hepatology. 2019;70(1):84–97. doi:10.1002/hep.30507
  • Kocaman N, Kuloglu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell. 2020;66:101397. doi:10.1016/j.tice.2020.101397
  • Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int. 2011;79(8):883–896. doi:10.1038/ki.2010.526
  • Welsh GI, Coward RJ. Podocytes, glucose and insulin. Curr Opin Nephrol Hypertens. 2010;19(4):379–384. doi:10.1097/MNH.0b013e32833ad5e4
  • Mima A, Yamomoto JH, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes. 2012;61(11):2967–2979. doi:10.2337/db11-1824
  • Mima A, Yasuzawa T, Nakamura T, Ueshima S. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Sci Rep. 2020;10(1):5775. doi:10.1038/s41598-020-62579-7
  • Mima A, Qi W, King GL. Implications of treatment that target protective mechanisms against diabetic nephropathy. Semin Nephrol. 2012;32(5):471–478. doi:10.1016/j.semnephrol.2012.07.010
  • Mima A. Mitochondria-targeted drugs for diabetic kidney disease. Heliyon. 2022;8(2):e08878. doi:10.1016/j.heliyon.2022.e08878
  • Mima A. A narrative review of diabetic kidney disease: previous and current evidence-based therapeutic approaches. Advances in Therap. 2022;39(8):3488–3500. doi:10.1007/s12325-022-02223-0
  • Mima A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J dias res. 2013;2013:248563. doi:10.1155/2013/248563
  • Mima A, Yasuzawa T, King GL, Ueshima S. Obesity‐associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio. 2018;8(4):664–670. doi:10.1002/2211-5463.12400
  • Fathy SA, Mohamed MR, Ali MAM, El-Helaly AE, Alattar AT. Influence of IL-6, IL-10, IFN-γ and TNF-α genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers. 2019;24(1):43–55. doi:10.1080/1354750X.2018.1501761
  • Cao L, Boston A, Jegede O, et al. Inflammation and Kidney Injury in Diabetic African American Men. J dias res. 2019;2019:5359635. doi:10.1155/2019/5359635
  • Langston PK, Nambu A, Jung J, et al. Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nat Immunol. 2019;20(9):1186–1195. doi:10.1038/s41590-019-0453-7