127
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Would Combination Be Better: Swimming Exercise and Intermittent Fasting Improve High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Obese Rats via the miR-122-5p/SREBP-1c/CPT1A Pathway

ORCID Icon, , , , , , & show all
Pages 1675-1686 | Received 17 Nov 2023, Accepted 12 Mar 2024, Published online: 11 Apr 2024

References

  • Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–1075.
  • Yustisia I, Tandiari D, Cangara MH, et al. A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats. Heliyon. 2022;8(10):e10896.
  • Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metabol. 2020;42:101092.
  • Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020;21(2):494.
  • Yan T, Luo Y, Yan N, et al. Intestinal peroxisome proliferator-activated receptor α-fatty acid-binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology. 2023;77(1):239–255.
  • Govaere O, Petersen SK, Martinez-Lopez N, et al. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J Hepatol. 2022;76(5):1001–1012.
  • Badmus OO, Hillhouse SA, Anderson CD, et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci. 2022;136(18):1347–1366.
  • Zhang Y, Lin S, Peng J, et al. Amelioration of hepatic steatosis by dietary essential amino acid-induced ubiquitination. Molecular Cell. 2022;82(8):1528–42.e10.
  • Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin molecular hepatol. 2023;29(1):77–98.
  • Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol. 2023;78(5):1048–1062.
  • Inomata Y, Oh JW, Taniguchi K, et al. Downregulation of miR-122-5p Activates Glycolysis via PKM2 in Kupffer Cells of Rat and Mouse Models of Non-Alcoholic Steatohepatitis. Int J Mol Sci. 2022;23(9):567.
  • Hu Y, Peng X, Du G, et al. MicroRNA-122-5p Inhibition Improves Inflammation and Oxidative Stress Damage in Dietary-Induced Non-alcoholic Fatty Liver Disease Through Targeting FOXO3. Front Physiol. 2022;13:803445.
  • Monraz-Méndez CA, Escutia-Gutiérrez R, Rodriguez-Sanabria JS, et al. Moringa oleifera Improves MAFLD by Inducing Epigenetic Modifications. Nutrients. 2022;14(20):4225.
  • Ezpeleta M, Gabel K, Cienfuegos S, et al. Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: a randomized controlled trial. Cell Metab. 2023;35(1):56–70.e3.
  • Pi H, Liu M, Xi Y, et al. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagy-lysosomal machinery. FASEB j. 2019;33(11):11870–11883.
  • Zou Y, Chen Z, Sun C, et al. Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci. 2021;22(20):10940.
  • Lavallee CM, Bruno A, Ma C, et al. The Role of Intermittent Fasting in the Management of Nonalcoholic Fatty Liver Disease: a Narrative Review. Nutrients. 2022;14(21):4655.
  • Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent Fasting: a Heart Healthy Dietary Pattern? Am j Med. 2020;133(8):901–907.
  • Freire R. Scientific evidence of diets for weight loss: different macronutrient composition, intermittent fasting, and popular diets. Nutrition. 2020;69:110549.
  • Varady KA, Cienfuegos S, Ezpeleta M, et al. Cardiometabolic Benefits of Intermittent Fasting. Annu. Rev. Nutr. 2021;41:333–361.
  • Morales-Suarez-Varela M, Collado Sánchez E, Peraita-Costa I, et al. Intermittent Fasting and the Possible Benefits in Obesity, Diabetes, and Multiple Sclerosis: a Systematic Review of Randomized Clinical Trials. Nutrients. 2021;13(9):3179.
  • Alnami A, Bima A, Alamoudi A, et al. Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients. 2022;14(9):1903.
  • Chen X, Yang K, Jin X, et al. Bone Autophagy: a Potential Way of Exercise-Mediated Meg3/P62/Runx2 Pathway to Regulate Bone Formation in T2DM Mice. Diabetes Metabolic Syndrome Obesity. 2021;14:2753–2764.
  • Lang X, Zhao N, He Q, et al. Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull. 2020;165:30–39.
  • Wilson RA, Deasy W, Stathis CG, et al. Intermittent Fasting with or without Exercise Prevents Weight Gain and Improves Lipids in Diet-Induced Obese Mice. Nutrients. 2018;10(3):546.
  • Wilson RA, Stathis CG, Hayes A, et al. Intermittent Fasting and High-Intensity Exercise Elicit Sexual-Dimorphic and Tissue-Specific Adaptations in Diet-Induced Obese Mice. Nutrients. 2020;12(6):1764.
  • Al-Thepyani M, Algarni S, Gashlan H, et al. Evaluation of the Anti-Obesity Effect of Zeaxanthin and Exercise in HFD-Induced Obese Rats. Nutrients. 2022;14(23):4944.
  • Farag MA, Ammar NM, Kholeif TE, et al. Rats’ urinary metabolomes reveal the potential roles of functional foods and exercise in obesity management. Food Funct. 2017;8(3):985–996.
  • Chen X, Yang K, Sun P, et al. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol Metab Syndr. 2021;13(1):116.
  • Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatric Diabetes. 2019;20(1):5–9.
  • Al-Sulaiti H, Diboun I, Agha MV, et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med. 2019;17(1):348.
  • Walsh JS, Vilaca T. Obesity, Type 2 Diabetes and Bone in Adults. Calcified Tissue Int. 2017;100(5):528–535.
  • Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 2019;92:82–97.
  • Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(8):484–495.
  • Rong L, Zou J, Ran W, et al. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol. 2022;13:1087260.
  • Farzanegi P, Dana A, Ebrahimpoor Z, et al. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation. Eur j Sport Sci. 2019;19(7):994–1003.
  • Sodum N, Kumar G, Bojja SL, et al. Epigenetics in NAFLD/NASH: targets and therapy. Pharmacol Res. 2021;167:105484.
  • Carbajo-Pescador S, Porras D, García-Mediavilla MV, et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Models Mech. 2019;12(5):567.
  • Byrne NM, Sainsbury A, King NA, et al. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obesity. 2018;42(2):129–138.
  • Keenan S, Cooke MB, Chen WS, et al. The Effects of Intermittent Fasting and Continuous Energy Restriction with Exercise on Cardiometabolic Biomarkers, Dietary Compliance, and Perceived Hunger and Mood: secondary Outcomes of a Randomised, Controlled Trial. Nutrients. 2022;14(15):3071.