137
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Regulation Role of the Gut-Islets Axis in Diabetes

ORCID Icon, , &
Pages 1415-1423 | Received 14 Dec 2023, Accepted 03 Mar 2024, Published online: 26 Mar 2024

References

  • Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism. 2019;96:46–55. doi:10.1016/j.metabol.2019.04.014
  • Lavergne A, Tarifeno-Saldivia E, Pirson J, et al. Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol. 2020;18(1):109. doi:10.1186/s12915-020-00840-1
  • Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516–1526. doi:10.1136/gutjnl-2019-318427
  • Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Reviews Endocrin Metabolic Disord. 2019;20(4):461–472. doi:10.1007/s11154-019-09512-0
  • Gribble FM, Reimann F. Enteroendocrine Cells: chemosensors in the intestinal epithelium, annual review of physiology 78; 2016;277–299.
  • Walker J, Saunders D, Brissova M, Powers A. The human islet: mini-organ with mega-impact. Endocrine Reviews. 2021;42(5):605–657. doi:10.1210/endrev/bnab010
  • Wendt A, Eliasson L. Pancreatic α-cells - The unsung heroes in islet function. Seminars Cell Develop Biology. 2020;103:41–50. doi:10.1016/j.semcdb.2020.01.006
  • Barbieux C, Parnaud G, Lavallard V, et al. Asymmetrical distribution of δ and PP cells in human pancreatic islets. J Endocrinol. 2016;229(2):123–132. doi:10.1530/JOE-15-0542
  • Li W, Yu G, Liu Y, Sha L. Intrapancreatic ganglia and neural regulation of pancreatic endocrine secretion. Front Neurosci. 2019;13:21. doi:10.3389/fnins.2019.00021
  • Vlahos AE, Cober N, Sefton MV. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci. 2017;114(35):9337–9342. doi:10.1073/pnas.1619216114
  • Faber CL, Deem JD, Campos CA, G.j. T, Morton GJ. CNS control of the endocrine pancreas. Diabetologia. 2020;63(10):2086–2094. doi:10.1007/s00125-020-05204-6
  • Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of glp-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018;9:672. doi:10.3389/fendo.2018.00672
  • Dj D. Incretin action in the pancreas Potential promise, possible perils, and pathological. Diabetes. 2013;62(10):3316–3323. doi:10.2337/db13-0822
  • Toso C, McCall M, Emamaullee J, et al. Liraglutide, a long-acting human glucagon-like peptide 1 analogue, improves human islet survival in culture. Transpl Int. 2010;23(3):259–265. doi:10.1111/j.1432-2277.2009.00984.x
  • Suleiman M, Marselli L, Cnop M, et al. The role of beta cell recovery in type 2 diabetes remission. Int J Mol Sci. 2022;23(13):7435. doi:10.3390/ijms23137435
  • Lupi R, Del Guerra S, D’Aleo V, Boggi U, Filipponi F, Marchetti P. The direct effects of GLP-1 and GIP, alone or in combination, on human pancreatic islets. Regul Pept. 2010;165(2–3):129–132. doi:10.1016/j.regpep.2010.04.009
  • Luo Y, Yang P, Li Z, et al. Liraglutide improves non-alcoholic fatty liver disease in diabetic mice by modulating inflammatory signaling pathways. Drug Des Devel Ther. 2019;13:4065–4074. doi:10.2147/DDDT.S224688
  • Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53(11):2357–2368. doi:10.1007/s00125-010-1849-y
  • Tschen SI, Georgia S, Dhawan S, Bhushan A. Skp2 is required for incretin hormone-mediated beta-cell proliferation. Mol Endocrinol. 2011;25(12):2134–2143. doi:10.1210/me.2011-1119
  • Song WJ, Schreiber WE, Zhong E, et al. Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes. 2008;57(9):2371–2381. doi:10.2337/db07-1541
  • Ren L, Cui Q, Liu W, et al. Novel GLP-1 analog supaglutide stimulates insulin secretion in mouse and human islet beta-cells and improves glucose homeostasis in diabetic mice. Front Physiol. 2019;10:930. doi:10.3389/fphys.2019.00930
  • Saikia M, Holter MM, Donahue LR, et al. GLP-1 receptor signaling increases PCSK1 and beta cell features in human alpha cells. JCI Insight. 2021;6(3). doi:10.1172/jci.insight.141851
  • Zhu L, Dattaroy D, Pham J, et al. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight. 2019;5(10):1.
  • Fernandez-Millan E, de Toro-Martin J, Lizarraga-Mollinedo E, Escriva F, Alvarez C. Role of endogenous IL-6 in the neonatal expansion and functionality of Wistar rat pancreatic alpha cells. Diabetologia. 2013;56(5):1098–1107. doi:10.1007/s00125-013-2862-8
  • Davis EM, Sandoval DA. Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Compr Physiol. 2020;10(2):577–595.
  • Lee YS, Lee C, Choung JS, Jung HS, Jun HS. Glucagon-like peptide 1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation. Diabetes. 2018;67(12):2601–2614. doi:10.2337/db18-0155
  • Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464(7292):1149–1154. doi:10.1038/nature08894
  • Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. doi:10.1016/j.cmet.2013.04.008
  • El K, Campbell JE. The role of GIP in alpha-cells and glucagon secretion. Peptides. 2020;125:170213. doi:10.1016/j.peptides.2019.170213
  • El K, Gray SM, Capozzi ME, et al. GIP mediates the incretin effect and glucose tolerance by dual actions on α cells and β cells. Sci Adv. 2021;12(7):11.
  • Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81(1):139–164. doi:10.1146/annurev-physiol-020518-114455
  • Lu M, Zhang X, Zheng D, Jiang X, Chen Q. Branched-chain amino acids supplementation protects streptozotocin-induced insulin secretion and the correlated mechanism. Biofactors. 2015;41(2):127–133. doi:10.1002/biof.1188
  • Liu J, Semiz S, van der Lee SJ, et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics. 2017;13(9):104. doi:10.1007/s11306-017-1239-2
  • Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes a systematic review and meta-analysis. Diabetes Care. 2016;39(5):833–846. doi:10.2337/dc15-2251
  • Harris LLS, Smith GI, Patterson BW, et al. Alterations in 3-hydroxyisobutyrate and FGF21 metabolism are associated with protein ingestion-induced insulin resistance. Diabetes. 2017;66(7):1871–1878. doi:10.2337/db16-1475
  • Wei S, Zhao J, Wang S, Huang M, Wang Y, Chen Y. Intermittent administration of a leucine-deprived diet is able to intervene in type 2 diabetes in db/db mice. Heliyon. 2018;4(9):e00830. doi:10.1016/j.heliyon.2018.e00830
  • Zhou WW, Sun JC, Chen HL. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRbeta. Nat Commun. 2022;13(1):4291. doi:10.1038/s41467-022-32000-0
  • Korner J, Cline GW, Slifstein M, et al. A role for foregut tyrosine metabolism in glucose tolerance. Mol Metab. 2019;23:37–50. doi:10.1016/j.molmet.2019.02.008
  • Tan C, Zheng Z, Wan X, Cao J, Wei R, Duan J. The role of gut microbiota and amino metabolism in the effects of improvement of islet beta-cell function after modified jejunoileal bypass. Sci Rep. 2021;11(1):4809. doi:10.1038/s41598-021-84355-x
  • Gheni G, Ogura M, Iwasaki M, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9(2):661–673. doi:10.1016/j.celrep.2014.09.030
  • Yokoi N, Gheni G, Takahashi H, Seino S. beta-Cell glutamate signaling: its role in incretin-induced insulin secretion. J Diabetes Investig. 2016;1(Suppl 1):38–43. doi:10.1111/jdi.12468
  • Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–325. doi:10.1080/19490976.2018.1465157
  • Kuang YS, Lu JH, Li SH, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience. 2017;6(8):1–12. doi:10.1093/gigascience/gix058
  • Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129(10):4050–4057. doi:10.1172/JCI129194
  • Solito A, Cionci NB, Calgaro M, et al. Supplementation with bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin Nutr. 2021;40(7):4585–4594. doi:10.1016/j.clnu.2021.06.002
  • Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci. 2020;1461(1):37–52. doi:10.1111/nyas.14107
  • Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBio Med. 2020;51:102590. doi:10.1016/j.ebiom.2019.11.051
  • Thaiss CA, Levy M, Grosheva I. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–1383. doi:10.1126/science.aar3318
  • Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–381. doi:10.1038/nature18646
  • Gao H, Luo Z, Ji Y, et al. Accumulation of microbial DNAs promotes to islet inflammation and beta cell abnormalities in obesity in mice. Nat Commun. 2022;13(1):565. doi:10.1038/s41467-022-28239-2
  • Verano-Braga T, Martins ALV, Motta-Santos D, Campagnole-Santos M, Santos RS; Campagnole-Santos, R.A.S. Santos, ACE2 in the renin-angiotensin system. Clin Sci (Lond). 2020;134(23):3063–3078. doi:10.1042/CS20200478
  • Xuan X, Gao F, Ma X, et al. Activation of ACE2/angiotensin (1-7) attenuates pancreatic beta cell dedifferentiation in a high-fat-diet mouse model. Metabolism. 2018;81:83–96. doi:10.1016/j.metabol.2017.12.003
  • Yuan L, Wang Y, Lu C, Li X. Angiotensin-converting enzyme 2 deficiency aggravates glucose intolerance via impairment of islet microvascular density in mice with high-fat diet. J Diabetes Res. 2013;2013:405284. doi:10.1155/2013/405284
  • Ma X, Gao F, Chen Q, et al. ACE2 modulates glucose homeostasis through GABA signaling during metabolic stress. J Endocrinol. 2020;246(3):223–236. doi:10.1530/JOE-19-0471
  • Garg M, Royce SG, Tikellis C, et al. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? Gut. 2020;69(5):841–851. doi:10.1136/gutjnl-2019-318512
  • Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. Am J Physiol Gastrointest Liver Physiol. 2021;321(4):G355–G366. doi:10.1152/ajpgi.00099.2021
  • Chen Q, Gao F, Gao Y, et al. Intestinal ACE2 regulates glucose metabolism in diet-induced obese mice through a novel gut-islet axis mediated by tryptophan. Obesity. 2023;31(5):1311–1325. doi:10.1002/oby.23719