23
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effects of Different Carbohydrate Content Diet on Gut Microbiota and Aortic Calcification in Diabetic Mice

, , ORCID Icon & ORCID Icon
Pages 2327-2346 | Received 27 Dec 2023, Accepted 28 May 2024, Published online: 02 Jul 2024

References

  • International Diabetes Federation. IDF Diabetes Atlas, 10th Edn. Brussels, Belgium: International Diabetes Federation; 2021.
  • Fox KAA, Metra M, Morais J, Atar D. The myth of ‘stable’ coronary artery disease. Nat Rev Cardiol. 2020;17(1):9–21. doi:10.1038/s41569-019-0233-y
  • Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacothe. 2021;135:111192. doi:10.1016/j.biopha.2020.111192
  • Khazrai YM, Defeudis G, Pozzilli P. Effect of diet on type 2 diabetes mellitus: a review. Diabetes/Metab Res Rev. 2014;30(Suppl 1):24–33. doi:10.1002/dmrr.2515
  • Sawyer L, Gale EA. Diet, delusion and diabetes. Diabetologia. 2009;52(1):1–7. doi:10.1007/s00125-008-1203-9
  • Liu YS, Wu QJ, Lv JL, et al. Dietary carbohydrate and diverse health outcomes: umbrella review of 30 systematic reviews and meta-analyses of 281 observational studies. Frontiers in Nutrition. 2021;8:670411. doi:10.3389/fnut.2021.670411
  • Bantle JP, Wylie-Rosett J, Albright AL, et al.; American Diabetes Association. Nutrition recommendations and interventions for diabetes: a position statement of the American diabetes association. Diabetes Care. 2008;31 Suppl 1:S61–S78. doi:10.2337/dc08-S061
  • Tandon N, Gupta Y, Kapoor D, et al. LIVING Collaborative Group. Effects of a lifestyle intervention to prevent deterioration in glycemic status among South Asian women with recent gestational diabetes: a randomized clinical trial. JAMA network open. 2022;5(3):e220773. doi:10.1001/jamanetworkopen.2022.0773
  • Ye J, Wu Z, Zhao Y, Zhang S, Liu W, Su Y. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: advanced research-based review. Front Microbiol. 2022;13:1029890. doi:10.3389/fmicb.2022.1029890
  • Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–108. doi:10.1016/j.jnutbio.2018.10.003
  • Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712. doi:10.1016/j.metabol.2021.154712
  • Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35–56.
  • Deledda A, Palmas V, Heidrich V, et al. Dynamics of gut microbiota and clinical variables after ketogenic and Mediterranean diets in drug-naïve patients with type 2 diabetes mellitus and obesity. Metabolites. 2022;12(11):1092. doi:10.3390/metabo12111092
  • Liu YH, Peng P, Hung WC, et al. Comparative gut microbiome differences between high and low aortic arch calcification score in patients with chronic diseases. Int J Mol Sci. 2023;24(6):5673. doi:10.3390/ijms24065673
  • Sun M, Fang Y, Zheng J, et al. Role of symbiotic microbiota dysbiosis in the progression of chronic kidney disease accompanied with vascular calcification. Front Pharmacol. 2024;14:1306125. doi:10.3389/fphar.2023.1306125
  • Kirkpatrick CF, Bolick JP, Kris-Etherton PM, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the national lipid association nutrition and lifestyle task force. J Clini Lipid. 2019;13(5):689–711.e1. doi:10.1016/j.jacl.2019.08.003
  • Feinman RD, Pogozelski WK, Astrup A, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31(1):1–13. doi:10.1016/j.nut.2014.06.011
  • Accurso A, Bernstein RK, Dahlqvist A, et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab. 2008;5(1):9. doi:10.1186/1743-7075-5-9
  • Ijoma GN, Nkuna R, Mutungwazi A, et al. Applying PICRUSt and 16S rRNA functional characterisation to predicting co-digestion strategies of various animal manures for biogas production. Sci Rep. 2021;11(1):19913. doi:10.1038/s41598-021-99389-4
  • Wilkinson TJ, Huws SA, Edwards JE, et al. CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software. Front Microbiol. 2018;9:1095. doi:10.3389/fmicb.2018.01095
  • Zhou C, Wang H, Zhao H, et al. fastANCOM: a fast method for analysis of compositions of microbiomes. Bioinformatics (Oxford, England). Bioinformatics (Oxford England) 2022;387:2039–2041. doi:10.1093/bioinformatics/btac060
  • Liu S, Wang Z, Zhu R, et al. Three differential expression analysis methods for RNA sequencing: limma, edgeR, DESeq2. J vis exp. 2021;175. doi:10.3791/62528
  • Schwarz J-M, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. American J Clini Nutri. 2003;77(1):43–50. doi:10.1093/ajcn/77.1.43
  • Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol. 2010;45(3):199–214. doi:10.3109/10409231003667500
  • Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):313. doi:10.1186/s12916-021-02185-0
  • Aktas G, Khalid A, Kurtkulagi O, et al. Poorly controlled hypertension is associated with elevated serum uric acid to HDL-cholesterol ratio: a cross-sectional cohort study. Postgraduate Med. 2022;134(3):297–302. doi:10.1080/00325481.2022.2039007
  • Kosekli MA, Kurtkulagii O, Kahveci G, et al. The association between serum uric acid to high density lipoprotein-cholesterol ratio and non-alcoholic fatty liver disease: the abund study. Revista da Associacao Medica Brasileira. 2021;67(4):549–554. doi:10.1590/1806-9282.20201005
  • Kurtkulagi O, Tel BMA, Kahveci G, et al. Hashimoto’s thyroiditis is associated with elevated serum uric acid to high density lipoprotein-cholesterol ratio. Rom J Intern Med. 2021;59(4):403–408. doi:10.2478/rjim-2021-0023
  • Kocak MZ, Aktas G, Erkus E, Sincer I, Atak B, Duman T. Serum uric acid to HDL-cholesterol ratio is a strong predictor of metabolic syndrome in type 2 diabetes mellitus. Revista da Associação Médica Brasileira. 2019;65(1):9–15. doi:10.1590/1806-9282.65.1.9
  • Balci SB, Atak BM, Duman T, Ozkul FN, Aktas G. A novel marker for prediabetic conditions: uric acid-to-HDL cholesterol ratio. Bratisl Lek Listy. 2024;125(3):145–148. doi:10.4149/BLL_2023_130
  • Aktas G, Kocak MZ, Bilgin S, Atak BM, Duman TT, Kurtkulagi O. Uric acid to HDL cholesterol ratio is a strong predictor of diabetic control in men with type 2 diabetes mellitus. Aging Male. 2020;23(5):1098–1102. doi:10.1080/13685538.2019.1678126
  • Kosekli MA, Aktas G. SERUM URIC ACID TO HDL CHOLESTEROL RATIO IS ASSOCIATED WITH DIABETIC CONTROL IN NEW ONSET TYPE 2 DIABETIC POPULATION. Acta clinica Croatica. 2023;62(2):277–282. doi:10.20471/acc.2023.62.02.04
  • Aktas G, Yilmaz S, Kantarci DB, et al. Is serum uric acid-to-HDL cholesterol ratio elevation associated with diabetic kidney injury? Postgraduate Med. 2023;135(5):519–523. doi:10.1080/00325481.2023.2214058
  • Franczyk B, Rysz J, Ławiński J, Rysz-Górzyńska M, Gluba-Brzózka A. Is a high HDL-cholesterol level always beneficial? Biomedicines. 2021;9(9):1083. doi:10.3390/biomedicines9091083
  • Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Delivery Rev. 2005;57(6):883–917. doi:10.1016/j.addr.2005.01.009
  • Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999;9(7):268–273. doi:10.1016/S0962-8924(99)01578-0
  • Hao W, Hao C, Wu C, Xu Y, Jin C. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere. 2022;288(Pt 2):132556. doi:10.1016/j.chemosphere.2021.132556
  • Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018;50(8):1–9. doi:10.1038/s12276-018-0126-x
  • Nishii N, Oshima T, Li M, et al. Lubiprostone induces claudin-1 and protects intestinal barrier function. Pharmacology. 2020;105(1–2):102–108. doi:10.1159/000503054
  • Anderson JM, Fanning AS, Lapierre L, Van Itallie CM. Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochem Soc Trans. 1995;23(3):470–475. doi:10.1042/bst0230470
  • Zhang J, Zhu S, Ma N, Johnston LJ, Wu C, Ma X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: a therapeutic target to control intestinal inflammation. Med Res Rev. 2021;41(2):1061–1088. doi:10.1002/med.21752
  • Yang YN, Wang QC, Xu W, Yu J, Zhang H, Wu C. The berberine-enriched gut commensal Blautia producta ameliorates high-fat diet (HFD)-induced hyperlipidemia and stimulates liver LDLR expression. Biomed Pharmacothe. 2022;155:113749. doi:10.1016/j.biopha.2022.113749
  • Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. doi:10.1371/journal.pone.0009085
  • Anavi-Cohen S, Tsybina-Shimshilashvili N, Zandani G, et al. Effects of high oleic acid peanuts on mice’s liver and adipose tissue metabolic parameters and gut microbiota composition. Frontiers in Nutrition. 2023;10:1205377. doi:10.3389/fnut.2023.1205377
  • Goldberg JB, Hancock RE, Parales RE, Loper J, Cornelis P. Pseudomonas 2007. J Bacteriol. 2008;190(8):2649–2662. doi:10.1128/JB.01950-07
  • Liu X, Guo W, Cui S, et al. A comprehensive assessment of the safety of blautia producta DSM 2950. Microorganisms. 2021;9(5):908. doi:10.3390/microorganisms9050908
  • Qin W, Xu B, Chen Y, et al. Dietary ellagic acid supplementation attenuates intestinal damage and oxidative stress by regulating gut microbiota in weanling piglets. Animal Nutri. 2022;11:322–333. doi:10.1016/j.aninu.2022.08.004
  • Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625–637. doi:10.1038/s41575-022-00631-9
  • Doherty TM, Asotra K, Fitzpatrick LA, et al. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci USA. 2003;100(20):11201–11206. doi:10.1073/pnas.1932554100
  • Otsuka F, Yasuda S, Noguchi T, Ishibashi-Ueda H. Pathology of coronary atherosclerosis and thrombosis. Cardio Diag Thera. 2016;6(4):396–408. doi:10.21037/cdt.2016.06.01
  • Van den Bergh G, Opdebeeck B, D’Haese PC, Verhulst A. The vicious cycle of arterial stiffness and arterial media calcification. Trends Mol Med. 2019;25(12):1133–1146. doi:10.1016/j.molmed.2019.08.006
  • Hu T, Wu Q, Yao Q, Jiang K, Yu J, Tang Q. Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Res Rev. 2022;81:101706. doi:10.1016/j.arr.2022.101706
  • Yang F, Xia N, Guo S, et al. Propionate alleviates abdominal aortic aneurysm by modulating colonic regulatory T-Cell expansion and recirculation. JACC. 2022;7(9):934–947. doi:10.1016/j.jacbts.2022.05.001
  • van Zuydam NR, Stiby A, Abdalla M, et al. Genome-wide association study of peripheral artery disease. Circulation: Genomic and Precision Medicine. 2021;14(5):e002862. doi:10.1161/CIRCGEN.119.002862
  • Lecce L, Xu Y, V’Gangula B, et al. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J Clin Invest. 2021;131(15):e131178. doi:10.1172/JCI131178
  • Lan Z, Chen A, Li L, et al. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification. J Pathol. 2022;258(3):213–226. doi:10.1002/path.5992