165
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Can Adipokine FAM19A5 Be a Biomarker of Metabolic Disorders?

ORCID Icon, ORCID Icon, &
Pages 1651-1666 | Received 18 Jan 2024, Accepted 19 Mar 2024, Published online: 09 Apr 2024

References

  • Thomas E, Fitzpatrick J, Etl Al MS, Taylor-Robinson SD, Bell JD. Whole body fat: content and distribution. Prog Nucl Magnet Res Spect. 2013;73:56–80. doi:10.1016/j.pnmrs.2013.04.001
  • Kuryszko J, Sławuta P, Sapikowski G. Secretory function of adipose tissue. Pol J Veterin Sci. 2016;19:441–446. doi:10.1515/pjvs-2016-0056
  • Colaianni G, Colucci S, Grano M. Anatomy and physiology of adipose tissue. In: Lenzi A, Migliaccio S, Donini L, editors. Multidisciplinary Approach to Obesity. Springer International Publishing; 2015:3–12.
  • Buczkowska M, Buczkowski K, Głogowska-Gruszka A, et al. Adipose tissue – the structure and its functions, with particular emphasis on the characteristics of selected adipokines and their effects on the organism. Med Og Nauk Zdr. 2019;25:162–169. doi:10.26444/monz/110429
  • Budzulak J, Majewska KA, Kędzia A. Malnutrition as the cause of growth retardation among children in developed countries. Ann Agric Environ Med. 2022;29:336–341. doi:10.26444/aaem/148010
  • Drygas W, Niklas AA, Piwońska A, et al. Multi-centre national population health examination survey (WOBASZ II study): assumptions, methods, and implementation. Kardiologia Polska (Polish Heart Journal). 2016;74:681–690. doi:10.5603/KP.a2015.0235
  • World Health Organisation. WHO EUROPEAN REGIONAL OBESITY REPORT 2022. Denmark; 2022.
  • Płaczkowska S, Pawlik-Sobiecka L, Kokot I, et al. Wykorzystanie bezpośrednich i pośrednich metod oceny profilu składu ciała u młodych osób – badanie pilotażowe. Fam Med Prim Care Rev. 2015;1:33–38.
  • Tchang BG, Saunders KH, Igel LI. Best practices in the management of overweight and obesity. Med Clin North Am. 2021;105:149–174. doi:10.1016/j.mcna.2020.08.018
  • Łuniewski M, Matyjaszek-Matuszek B, Lenart-Lipińska M. Diagnosis and non-invasive treatment of obesity in adults with type 2 diabetes mellitus: a review of guidelines. J Clin Med. 2023;12:4431. doi:10.3390/jcm12134431
  • Gaesser GA, Angadi SS. Obesity treatment: weight loss versus increasing fitness and physical activity for reducing health risks. iScience. 2021;24:102995. doi:10.1016/j.isci.2021.102995
  • Bogdański P, Filipiak KJ, Kowalska I, et al. Interdyscyplinarne stanowisko w sprawie rozpoznawania i leczenia otyłości. Forum Zaburzen Metabolicznych. 2020;11:47–54.
  • Ellulu MS, Patimah I, Khaza’ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;4:851–863. doi:10.5114/aoms.2016.58928
  • Khanna D, Khanna S, Khanna P, et al. Obesity: a Chronic Low-Grade Inflammation and Its Markers. Cureus. 2022;14(2):e22711. doi:10.7759/cureus.22711
  • Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med. 2022;20:494. doi:10.1186/s12916-022-02672-y
  • Chwalba A, Machura E, Ziora K, Ziora D. The role of adipokines in the pathogenesis and course of selected respiratory diseases. Endokrynol Pol. 2019;70:504–510. doi:10.5603/EP.a2019.0051
  • Cook KS, Min HY, Johnson D, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987;237(4813):402–405. doi:10.1126/science.3299705
  • Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;1(372):6505.
  • Al-Hussaniy HA, Alburghaif AH, Naji MA. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life. 2021;14(5):600–605. doi:10.25122/jml-2021-0153
  • Abdalla MMI. Role of visfatin in obesity-induced insulin resistance. World J Clin Cases. 2022;10:10840–10851. doi:10.12998/wjcc.v10.i30.10840
  • Borsuk A, Biernat W, Zięba D, et al. Wielokierunkowe działanie rezystyny w organizmie. Postępy Higieny i Medycyny Doświadczalnej. 2018;72:327–338. doi:10.5604/01.3001.0011.8252
  • Gandham R, Sumathi M, Dayanand C, et al. Apelin and its Receptor: an Overview. JCDR. 2019;13(6):BE01- BE06.
  • Stojek M. The role of chemerin in human disease. Postepy Hig Med Dosw. 2017;71:110–117. doi:10.5604/01.3001.0010.3795
  • Roguska J, Zubkiewicz-Kucharska A. Chemerin as an early marker of metabolic syndrome. Pediatr Endocrinol Diabetes Me. 2018;24:45–51. doi:10.18544/PEDM-24.01.0102
  • Badowska-Kozakiewicz AM. Biologiczna rola czynnika martwicy nowotworów α w fizjologii i patofizjologii. Przeglad Menopauzalny. 2013;141:12.
  • Dobrowolski P, Dudek D, Dyrbuś K,et al.; A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Metabolic syndrome – a new definition and management guidelines. Arch Med Sci. 2022;18:1133–1156.
  • Wyrzykowski B. Epidemiologia zespołu metabolicznego w Polsce. Wyniki programu WOBASZ. Kardiologia Polska. 2005;63(6).
  • Mohamed SM, Shalaby MA, El-Shiekh RA, et al. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem Advan. 2023;3:100335. doi:10.1016/j.focha.2023.100335
  • Wang Y, Chen D, Zhang Y, et al. Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation. 2018;138:48–63. doi:10.1161/CIRCULATIONAHA.117.032398
  • Shahapal A, Cho EB, Yong HJ, et al. FAM19A5 expression during embryogenesis and in the adult traumatic brain of FAM19A5-lacz knock-in mice. Front Neurosci. 2019;13:917. doi:10.3389/fnins.2019.00917
  • Park M, Kim HS, Lee M, et al. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep. 2017;7. doi:10.1038/s41598-017-15586-0
  • Xie K, Liu L, Yin C, et al. Follistatin-Like 1 and family with sequence similarity to 19 member a5 levels are decreased in obese children and associated with glucose metabolism. Ann Nutr Metab. 2022;78:213–221. doi:10.1159/000524624
  • Tom Tang Y, Emtage P, Funk WD, et al. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain. Genomics. 2004;83:727–734. doi:10.1016/j.ygeno.2003.10.006
  • de Ståhl T D, Hartmann C, de Bustos C, et al. Chromosome 22 tiling-path array-CGH analysis identifies germ-line- and tumor-specific aberrations in patients with glioblastoma multiforme. Gen Chromos Can. 2005;44:161–169. doi:10.1002/gcc.20226
  • Kashevarova AA, Belyaeva EO, Nikonov AM, et al. Compound phenotype in a girl with r(22), concomitant microdeletion 22q13.32-q13.33 and mosaic monosomy 22. Mol Cytogenet. 2018;11:26. doi:10.1186/s13039-018-0375-3
  • Zheng C, Chen D, Zhang Y,et al.FAM19A1 is a new ligand for GPR1 that modulates neural stem-cell proliferation and differentiation. FASEB J. 2018;fj201800020RRR. doi:10.1096/fj.201800020RRR
  • Inan C, Sayin NC, Gurkan H, et al. Schizencephaly accompanied by occipital encephalocele and deletion of chromosome 22q13.32: a case report. Fetal Pediatr Pathol. 2019;38:496–502. doi:10.1080/15513815.2019.1604921
  • Khalaj AJ, Sterky FH, Sclip A, et al. Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. J Cell Biol. 2020;219:e202004164. doi:10.1083/jcb.202004164
  • Yong HJ, Ha N, Cho EB, et al. The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Sci Rep. 2020;10:3969. doi:10.1038/s41598-020-60266-1
  • Li J, Li S, Song Y, et al. Association of serum FAM19A5 with cognitive impairment in vascular dementia. Dis Markers. 2020;2020:8895900. doi:10.1155/2020/8895900
  • Lee HL, Seok HY, Ryu H-W, et al. Serum FAM19A5 in neuromyelitis optica spectrum disorders: can it be a new biomarker representing clinical status? Mult Scler. 2020;26:1700–1707. doi:10.1177/1352458519885489
  • Huang S, Zheng C, Xie G, et al. FAM19A5/TAFA5, a novel neurokine, plays a crucial role in depressive-like and spatial memory-related behaviors in mice. Mol Psychiatry. 2021;26:2363–2379. doi:10.1038/s41380-020-0720-x
  • Han KM, Tae W-S, Kim A, et al. Serum FAM19A5 levels: a novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder. Brain Behav Immun. 2020;87:852–859. doi:10.1016/j.bbi.2020.03.021
  • Abdallah MS, Ramadan AN, Omara‐Reda H, et al. Double-blind, randomized, placebo-controlled pilot study of the phosphodiesterase-3 inhibitor cilostazol as an adjunctive to antidepressants in patients with major depressive disorder. CNS Neurosci Ther. 2021;27:1540–1548. doi:10.1111/cns.13731
  • Li XN, Hao D-P, Qu M-J, et al. Development and validation of a plasma FAM19A5 and MRI-based radiomics model for prediction of parkinson’s disease and parkinson’s disease with depression. Front Neurosci. 2021;15:795539. doi:10.3389/fnins.2021.795539
  • Janvilisri T, Leelawat K, Roytrakul S, et al. Novel Serum Biomarkers to Differentiate Cholangiocarcinoma from Benign Biliary Tract Diseases Using a Proteomic Approach. Dis Markers. 2015;2015:105358. doi:10.1155/2015/105358
  • Hu Z, Niu G, Ren J, et al. TAFA5 promotes proliferation and migration in gastric cancer. Mol Med Rep. 2019;20:4477–4488. doi:10.3892/mmr.2019.10724
  • Wang YF, Huang S-Y, Zhang Z-H, et al. Clinical efficacy of allo-HSCT on FLT3-ITD positive AML patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(4):1183–1188. doi:10.19746/j.cnki.issn.1009-2137.2020.04.017
  • Luan S, Li J, Qin S, et al. FAM19A5 is an independent prognostic biomarker in thyroid cancer. Res Square. 2022. doi:10.21203/rs.3.rs-1712708/v1
  • Pan X, Karner CM, Carroll TJ. Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells. Development. 2017;144:4173–4182. doi:10.1242/dev.153700
  • Wang Y, Zhang Z, Wan W, et al. FAM19A5/S1PR1 signaling pathway regulates the viability and proliferation of mantle cell lymphoma. J Recept Signal Transduction Res. 2022;42:225–229. doi:10.1080/10799893.2021.1895220
  • Sevane N, Martínez R, Bruford MW. Genome-wide differential DNA methylation in tropically adapted Creole cattle and their Iberian ancestors. Anim Genet. 2019;50:15–26. doi:10.1111/age.12731
  • Hao Z, Yang S, Yin R, et al. Increased level of FAM19A5 is associated with cerebral small vessel disease and leads to a better outcome. PeerJ. 2022;10:e13101. doi:10.7717/peerj.13101
  • Paulsen SJ, Christensen MT, Vrang N, et al. The putative neuropeptide TAFA5 is expressed in the hypothalamic paraventricular nucleus and is regulated by dehydration. Brain Research. 2008;1199:1–9. doi:10.1016/j.brainres.2007.12.074
  • Lee YB, Hwang H-J, Kim JA, et al. Association of serum FAM19A5 with metabolic and vascular risk factors in human subjects with or without type 2 diabetes. Diab Vasc Dis Res. 2019;16:530–538. doi:10.1177/1479164119860746
  • Lei X, Liu L, Terrillion CE, et al. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors. THE FASEB Journal. 2019;33:14734–14747. doi:10.1096/fj.201901232RR
  • Yari FA, Shabani P, Karami S, et al. Circulating levels of FAM19A5 are inversely associated with subclinical atherosclerosis in non-alcoholic fatty liver disease. BMC Endocr Disord. 2021;21:153. doi:10.1186/s12902-021-00820-8
  • Wesolek A, Skoracka K, Skrypnik K, et al. Assessment of progranulin and FAM19A5 protein blood levels in patients with metabolic syndrome. J Physiol Pharmacol. 2022;73.
  • Kwak H, Cho EH, Lee YN, et al. Is FAM19A5 an adipokine? Peripheral FAM19A5 in wild-type, FAM19A5 knock-out, and LacZ knock-in mice. bioRxiv. 2020. doi:10.1101/2020.02.19.955351
  • Bundzikova J, Pirnik Z, Zelena D, et al. Response of substances co-expressed in hypothalamic magnocellular neurons to osmotic challenges in normal and brattleboro rats. Cell Mol Neurobiol. 2008;28:1033–1047. doi:10.1007/s10571-008-9306-x
  • Kang D, Kim HR, Kim KK, et al. Brain-specific chemokine FAM19A5 induces hypothalamic inflammation. Biochem Biophys Res Commun. 2020;523:829–834. doi:10.1016/j.bbrc.2019.12.119
  • An B, Xia J, Chang T, et al. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese wagyu beef cattle. Anim Genet. 2019;50:386–390. doi:10.1111/age.12805
  • Ma F, Hao J, Zhao J, et al. Circulating FAM19A5 level is associated with the presence and severity of coronary artery disease. Int J Cardiol. 2022;354:50–55. doi:10.1016/j.ijcard.2022.03.011
  • Wei C, Liu Y, Xing E, et al. Association between novel pro- and anti- inflammatory adipocytokines in patients with acute coronary syndrome. Clin Appl Thromb Hemost. 2022;28:10760296221128020. doi:10.1177/10760296221128021