0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Tanshinone IIA Promoted Autophagy and Inhibited Inflammation to Alleviate Podocyte Injury in Diabetic Nephropathy

ORCID Icon, , , &
Pages 2709-2724 | Received 18 Mar 2024, Accepted 05 Jul 2024, Published online: 23 Jul 2024

References

  • Sagoo MK, Gnudi L. Diabetic nephropathy: an overview. Methods Mol Biol. 2020;2067:3–7. doi:10.1007/978-1-4939-9841-8_1
  • Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi:10.1155/2021/1497449
  • Podgórski P, Konieczny A, Lis Ł, Witkiewicz W, Hruby Z. Glomerular podocytes in diabetic renal disease. Adv Clin Exp Med. 2019;28(12):1711–1715. doi:10.17219/acem/104534
  • Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic alterations in podocytes in diabetic nephropathy. Front Pharmacol. 2021;12:759299. doi:10.3389/fphar.2021.759299
  • Lin Q, Banu K, Ni Z, Leventhal JS, Menon MC. Podocyte autophagy in homeostasis and disease. J Clin Med. 2021;10(6). doi:10.3390/jcm10061184
  • Cao W, Li J, Yang K, Cao D. An overview of autophagy: mechanism, regulation and research progress. Bull Cancer. 2021;108(3):304–322. doi:10.1016/j.bulcan.2020.11.004
  • Dong W, Jia C, Li J, et al. Fisetin attenuates diabetic nephropathy-induced podocyte injury by inhibiting NLRP3 inflammasome. Front Pharmacol. 2022;13:783706. doi:10.3389/fphar.2022.783706
  • Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS. Down-regulation of risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res. 2022;9(1):23. doi:10.1186/s40779-022-00385-0
  • Wu K, Peng R, Mu Q, et al. Rack1 regulates pro-inflammatory cytokines by NF-κB in diabetic nephropathy. Open Med. 2022;17(1):978–990. doi:10.1515/med-2022-0487
  • Ou Y, Zhang W, Chen S, Deng H. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway. Open Med. 2021;16(1):1286–1298. doi:10.1515/med-2021-0335
  • Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. 2022;69(1):248–264. doi:10.1002/bab.2104
  • Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3):1006–1014. doi:10.4049/jimmunol.1601515
  • Xing Y, Wei H, Xiao X, et al. Methylated Vnn1 at promoter regions induces asthma occurrence via the PI3K/Akt/NFκB-mediated inflammation in IUGR mice. Biol Open. 2020;9(4). doi:10.1242/bio.049106
  • Lu TC, Wu YH, Chen WY, Hung YC. Targeting oxidative stress and endothelial dysfunction using tanshinone iia for the treatment of tissue inflammation and fibrosis. Oxid Med Cell Longev. 2022;2022:2811789. doi:10.1155/2022/2811789
  • Kim SK, Jung KH, Lee BC. Protective effect of tanshinone IIA on the early stage of experimental diabetic nephropathy. Biol Pharm Bull. 2009;32(2):220–224. doi:10.1248/bpb.32.220
  • Liu XJ, Hu XK, Yang H, et al. A review of traditional Chinese medicine on treatment of diabetic nephropathy and the involved mechanisms. Am J Chin Med. 2022:1–41. doi:10.1142/s0192415x22500744
  • Li W, Sargsyan D, Wu R, et al. DNA methylome and transcriptome alterations in high glucose-induced diabetic nephropathy cellular model and identification of novel targets for treatment by tanshinone IIA. Chem Res Toxicol. 2019;32(10):1977–1988. doi:10.1021/acs.chemrestox.9b00117
  • Li Y, Deng X, Zhuang W, et al. Tanshinone IIA down-regulates -transforming growth factor beta 1 to relieve renal tubular epithelial cell inflammation and pyroptosis caused by high glucose. Bioengineered. 2022;13(5):12224–12236. doi:10.1080/21655979.2022.2074619
  • Ding L, Ding L, Wang S, et al. Tanshinone IIA affects autophagy and apoptosis of glioma cells by inhibiting phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Pathway. Pharmacology. 2017;99(3–4):188–195. doi:10.1159/000452340
  • Pan Y, Qian JX, Lu SQ, et al. Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats. Iran J Basic Med Sci. 2017;20(3):308–315. doi:10.22038/ijbms.2017.8361
  • Han W, Zhang L, Yu LJ, Wang JQ. Effect of local delivery of vancomycin and tobramycin on bone regeneration. Orthop Surg. 2021;13(5):1654–1661. doi:10.1111/os.13020
  • Wang W, Long H, Huang W, et al. Bu-Shen-Huo-Xue decoction ameliorates diabetic nephropathy by inhibiting Rac1/PAK1/p38MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Front Pharmacol. 2020;11:587663. doi:10.3389/fphar.2020.587663
  • Yang F, Qu Q, Zhao C, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Biomed Pharmacother. 2020;129:110479. doi:10.1016/j.biopha.2020.110479
  • Li X, Ma A, Liu K. Geniposide alleviates lipopolysaccharide-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. Artif Cells Nanomed Biotechnol. 2019;47(1):1524–1532. doi:10.1080/21691401.2019.1601630
  • Xuan C, Xi YM, Zhang YD, Tao CH, Zhang LY, Cao WF. Yiqi jiedu huayu decoction alleviates renal injury in rats with diabetic nephropathy by promoting autophagy. Front Pharmacol. 2021;12:624404. doi:10.3389/fphar.2021.624404
  • Nie P, Lou Y, Bai X, et al. Influence of zinc levels and Nrf2 expression in the clinical and pathological changes in patients with diabetic nephropathy. Nutr Diabetes. 2022;12(1):37. doi:10.1038/s41387-022-00212-4
  • Jaimes EA, Zhou MS, Siddiqui M, et al. Nicotine, smoking, podocytes, and diabetic nephropathy. Am J Physiol Renal Physiol. 2021;320(3):F442–f453. doi:10.1152/ajprenal.00194.2020
  • Lu CC, Wang GH, Lu J, et al. Role of Podocyte Injury in Glomerulosclerosis. Adv Exp Med Biol. 2019;1165:195–232. doi:10.1007/978-981-13-8871-2_10
  • Chen X, Wu R, Kong Y, et al. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget. 2017;8(19):31915–31922. doi:10.18632/oncotarget.16651
  • Liu J, Zhang J, Hou MH, Du WX. Clinical efficacy of linagliptin combined with irbesartan in patients with diabetic nephropathy. Pak J Med Sci. 2022;38(1):52–56. doi:10.12669/pjms.38.1.4417
  • Abdel-Wahab AF, Bamagous GA, Al-Harizy RM, et al. Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomed Pharmacother. 2018;103:59–66. doi:10.1016/j.biopha.2018.03.176
  • Mohamed EA, Ahmed HI, Zaky HS. Protective effect of irbesartan against doxorubicin-induced nephrotoxicity in rats: implication of AMPK, PI3K/Akt, and mTOR signaling pathways. Can J Physiol Pharmacol. 2018;96(12):1209–1217. doi:10.1139/cjpp-2018-0259
  • Li HQ, Liu N, Zheng ZY, Teng HL, Pei J. Clopidogrel delays and can reverse diabetic nephropathy pathogenesis in type 2 diabetic db/db mice. World J Diabetes. 2022;13(8):600–612. doi:10.4239/wjd.v13.i8.600
  • Dai H, Liu Q, Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res. 2017;2017:2615286. doi:10.1155/2017/2615286
  • Li XZ, Jiang H, Xu L, et al. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway. Biochem Pharmacol. 2021;192:114675. doi:10.1016/j.bcp.2021.114675
  • Yuan S, Liang X, He W, Liang M, Jin J, He Q. ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte. Ren Fail. 2021;43(1):968–979. doi:10.1080/0886022x.2021.1936040
  • Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–473. doi:10.1089/ars.2013.5371
  • Jiang P, Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 2015;75:13–18. doi:10.1016/j.ymeth.2014.11.021
  • Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–614. doi:10.1083/jcb.200507002
  • Shi Y, Tao M, Ma X, et al. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis. 2020;11(6):467. doi:10.1038/s41419-020-2673-z
  • Lu H, Yang HL, Zhou WJ, et al. Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence. Autophagy. 2021;17(9):2511–2527. doi:10.1080/15548627.2020.1833515
  • Wu M, Han W, Song S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 2018;478:115–125. doi:10.1016/j.mce.2018.08.002
  • Hu N, Wang C, Dai X, et al. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. J Ethnopharmacol. 2020;248:112361. doi:10.1016/j.jep.2019.112361
  • Cheng Q, Pan J, Zhou ZL, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin. 2021;42(6):954–963. doi:10.1038/s41401-020-00525-z
  • Song S, Qiu D, Shi Y, et al. Thioredoxin-interacting protein deficiency alleviates phenotypic alterations of podocytes via inhibition of mTOR activation in diabetic nephropathy. J Cell Physiol. 2019;234(9):16485–16502. doi:10.1002/jcp.28317
  • Chen J, Yuan S, Zhou J, et al. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. Phytomedicine. 2022;107:154477. doi:10.1016/j.phymed.2022.154477
  • Zhang Y, Wang Y, Luo M, et al. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides. 2019;114:29–37. doi:10.1016/j.peptides.2019.04.005
  • El-Hanboshy SM, Helmy MW, Abd-Alhaseeb MM. Catalpol synergistically potentiates the anti-tumour effects of regorafenib against hepatocellular carcinoma via dual inhibition of PI3K/Akt/mTOR/NF-κB and VEGF/VEGFR2 signaling pathways. Mol Biol Rep. 2021;48(11):7233–7242. doi:10.1007/s11033-021-06715-0