46
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Expression Profiles and Bioinformatic Analysis of Circular RNAs in Db/Db Mice with Cardiac Fibrosis

, , , , ORCID Icon, & ORCID Icon show all
Pages 2107-2120 | Received 23 Feb 2024, Accepted 15 May 2024, Published online: 23 May 2024

References

  • Kristensen L, Andersen M, Stagsted L, Ebbesen K, Hansen T, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rep Genet. 2019;20(11):675–691. doi:10.1038/s41576-019-0158-7
  • Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–157. doi:10.1261/rna.035667.112
  • Meng L, Lu Y, Wang X, et al. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways. SCI ADV. 2023;9(31):eadd4222. doi:10.1126/sciadv.add4222
  • Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep. 2017;7(1):40342. doi:10.1038/srep40342
  • Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun. 2017;487(4):769–775. doi:10.1016/j.bbrc.2017.04.044
  • Wang W, Zhang S, Xu L, et al. Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice. Diabetologia. 2021;64(3):681–692. doi:10.1007/s00125-020-05353-8
  • Yuan Q, Sun Y, Yang F, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Sigal Transduct Tar. 2023;8(1):99. doi:10.1038/s41392-022-01306-2
  • Gu X, Jiang Y, Wang W, et al. Comprehensive circRNA expression profile and construction of circRNA-related ceRNA network in cardiac fibrosis. Biomed Pharmacother. 2020;125:109944. doi:10.1016/j.biopha.2020.109944
  • Dong S, Tu C, Ye X, et al. Expression profiling of circular RNAs and their potential role in early‑stage diabetic cardiomyopathy. Mol Med Rep. 2020;22(3):1958–1968. doi:10.3892/mmr.2020.11248
  • Chen Y, Zhou J, Wei Z, et al. Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Front Pharmacol. 2022;13:940768. doi:10.3389/fphar.2022.940768
  • Pham T, Nguyen T, Yi J, et al. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice. Exp Mol Med. 2023;55(4):767–778. doi:10.1038/s12276-023-00958-6
  • Tao H, Shi P, Zhao XD, Xuan HY, Gong WH, Ding XS. DNMT1 deregulation of SOCS3 axis drives cardiac fibroblast activation in diabetic cardiac fibrosis. J Cell Physiol. 2020;1:1.
  • Wang C, Liu W, Tan S, et al. Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer. 2022;21(1):63. doi:10.1186/s12943-022-01546-4
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–358. doi:10.1016/j.cell.2011.07.014
  • Lin J, Shi S, Chen Q, Pan Y, Alatas B. Differential Expression and bioinformatic analysis of the circRNA expression in migraine patients. Biomed Res. Int. 2020;2020:4710780. doi:10.1155/2020/4710780
  • Tan Y, Cao L, Jiao Y, et al. Inhibition of miR-543 alleviates cardiac fibroblast-to-myofibroblast transformation and collagen expression in insulin resistance via targeting PTEN. Mol Cell Endocrinol. 2023;576:111996. doi:10.1016/j.mce.2023.111996
  • Lu L, Ma J, Liu Y, et al. FSTL1-USP10-notch1 signaling axis protects against cardiac dysfunction through inhibition of myocardial fibrosis in diabetic mice. Front Cell Dev Biol. 2021;9:757068. doi:10.3389/fcell.2021.757068
  • Gómez-Banoy N, Guseh J, Li G, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med. 2019;25(11):1739–1747. doi:10.1038/s41591-019-0610-4
  • Wu X, Zhang S, Zhou X. Investigation on the differentially expressed circular RNAs in myocardium of mice with diabetic cardiomyopathy. Zhonghua xin xue guan bing za zhi. 2022;50(5):501–508. doi:10.3760/cma.j.cn112148-20220328-00216
  • Syreeni A, Sandholm N, Sidore C, et al. Genome-wide search for genes affecting the age at diagnosis of type 1 diabetes. J Intern Med. 2021;289(5):662–674. doi:10.1111/joim.13187
  • Alberto-Aguilar D, Hernández-Ramírez V, Osorio-Trujillo J, Gallardo-Rincón D, Toledo-Leyva A, Talamás-Rohana P. PHD finger protein 20-like protein 1 (PHF20L1) in ovarian cancer: from its overexpression in tissue to its upregulation by the ascites microenvironment. Cancer Cell Int. 2022;22(1):6. doi:10.1186/s12935-021-02425-6
  • Li C, Wang X, Chen T, et al. ViaHuaier induces immunogenic cell death circCLASP1/PKR/eIF2α signaling pathway in triple negative breast cancer. Front Cell Dev Biol. 2022;10:913824. doi:10.3389/fcell.2022.913824
  • Königshoff M, Eickelberg O. Listen to the WNT; It Talks: WNT7A drives epithelial-mesenchymal cross-talk within the fibrotic niche in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2023;68(3):239–240. doi:10.1165/rcmb.2022-0479ED
  • Wu N, Li F, Yang W, et al. Silencing mouse circular RNA circSlc8a1 by circular antisense cA-circSlc8a1 induces cardiac hepatopathy. Mol Ther. 2023;31(6):1688–1704. doi:10.1016/j.ymthe.2022.10.005
  • Zhang J, Lu J, Xie H, et al. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis. 2019;10(3):182. doi:10.1038/s41419-019-1430-7
  • Wu Y, Luan J, Jiao C, et al. circHIPK3 exacerbates folic acid-induced renal tubulointerstitial fibrosis by sponging miR-30a. Front Physiol. 2021;12:715567. doi:10.3389/fphys.2021.715567
  • Burza M, Motta B, Mancina R, et al. DEPDC5 variants increase fibrosis progression in Europeans with chronic hepatitis C virus infection. Hepatology. 2016;63(2):418–427. doi:10.1002/hep.28322
  • Zhu Y, Hu Y, Cheng X, Li Q, Niu Q. Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl rat model. J Mol Histol. 2021;52(3):491–501. doi:10.1007/s10735-020-09949-7
  • Cui L, Zhang Y, Ge X, et al. Downregulated PEG3 ameliorates cardiac fibrosis and myocardial injury in mice with ischemia/reperfusion through the NF-κB signaling pathway. J Bioenerg Biomembr. 2020;52(3):143–154. doi:10.1007/s10863-020-09831-x
  • Schellinger I, Wagenhäuser M, Chodisetti G, et al. MicroRNA miR-29b regulates diabetic aortic remodeling and stiffening. Mol Ther Nucl Acids. 2021;24:188–199. doi:10.1016/j.omtn.2021.02.021
  • Yuan J, Yang H, Liu C, et al. Microneedle patch loaded with exosomes containing MicroRNA-29b prevents cardiac fibrosis after myocardial infarction. Adv Healthc Mter. 2023;12(13):1.
  • Zhang Y, Cai S, Ding X, et al. MicroRNA-30a-5p silencing polarizes macrophages toward M2 phenotype to alleviate cardiac injury following viral myocarditis by targeting SOCS1. Am J Physiol Heart Circ Physiol. 2021;320(4):H1348–H1360. doi:10.1152/ajpheart.00431.2020
  • Yang X, Li X, Lin Q, Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene. 2019;715:143995. doi:10.1016/j.gene.2019.143995
  • Zhao T, Kee H, Bai L, Kim M, Kee S, Jeong M. Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway. Front Pharmacol. 2021;12:677757. doi:10.3389/fphar.2021.677757
  • Wu M, Xing Q, Duan H, Qin G, Sang N. Suppression of NADPH oxidase 4 inhibits PM-induced cardiac fibrosis through ROS-P38 MAPK pathway. Sci Total Environ. 2022;837:155558. doi:10.1016/j.scitotenv.2022.155558
  • Zhou H, Zhang K, Li Y, Guo B, Wang M, Wang M. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses high glucose-induced proliferation and collagen synthesis in rat cardiac fibroblasts. Clin Exp Pharmacol Physiol. 2011;38(6):387–394. doi:10.1111/j.1440-1681.2011.05523.x
  • Zhou H, Li Y, Wang M, et al. Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes. Acta Pharmacol Sin. 2011;32(8):999–1008. doi:10.1038/aps.2011.54
  • Hsu C, Liu I, Kuo H, et al. miR-29a-3p/THBS2 axis regulates PAH-induced cardiac fibrosis. Int J Mol Sci. 2021;22(19). doi:10.3390/ijms221910574
  • Wang R, Peng L, Lv D, et al. Leonurine attenuates myocardial fibrosis through upregulation of miR-29a-3p in mice post-myocardial infarction. J Cardiovasc Pharmacol. 2021;77(2):189–199. doi:10.1097/FJC.0000000000000957
  • Kong H, Song Q, Hu W, et al. MicroRNA-29a-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting Roundabout homolog 1 in hepatic stellate cells. Parasite Vector. 2023;16(1):184. doi:10.1186/s13071-023-05791-4
  • Bu N, Gao Y, Zhao Y, et al. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide. Ecotoxicol Environ Saf. 2022;247:114173. doi:10.1016/j.ecoenv.2022.114173
  • Zhao M, Li N, Wan C, Zhang Q, Wang H, Jiang C. LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p. Mutat Res. 2023;826:111817. doi:10.1016/j.mrfmmm.2023.111817