179
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Forelimb Resistance Exercise Protects Against Neuromuscular Junction Denervation in the SOD1-G93A Rat Model of ALS

, , , , , , , & show all
Pages 145-155 | Received 09 Sep 2022, Accepted 15 Nov 2022, Published online: 22 Nov 2022

References

  • Jaiswal MK. Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev. 2019;39(2):733–748. Cited in: PMID: 30101496. doi:10.1002/med.21528
  • Tsitkanou S, Della Gatta P, Foletta V, Russell A. The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front Neurol. 2019;10:783. Cited in: PMID: 31379732; PMCID: PMC6652799. doi:10.3389/fneur.2019.00783
  • Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–1775. Erratum in: Science 1995 Jul 14;269(5221):149. PMID: 8209258. doi:10.1126/science.8209258
  • Nagai M, Aoki M, Miyoshi I, et al. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci. 2001;21(23):9246–9254. PMID: 11717358; PMCID: PMC6763929. doi:10.1523/JNEUROSCI.21-23-09246.2001
  • Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232–240. PMID: 14736504. doi:10.1016/j.expneurol.2003.10.004
  • Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol. 2003;53(6):804–807. PMID: 12783429. doi:10.1002/ana.10597
  • Veldink JH, Bär PR, Joosten EA, Otten M, Wokke JH, van den Berg LH. Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord. 2003;13(9):737–743. PMID: 14561497. doi:10.1016/s0960-8966(03)00104-4
  • Mahoney DJ, Rodriguez C, Devries M, Yasuda N, Tarnopolsky MA. Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve. 2004;29(5):656–662. PMID: 15116368. doi:10.1002/mus.20004
  • Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol. 2005;57(5):649–655. PMID: 15852403. doi:10.1002/ana.20451
  • Carreras I, Yuruker S, Aytan N, et al. Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res. 2010;1313:192–201. PMID: 19968977; PMCID: PMC2892864. doi:10.1016/j.brainres.2009.11.051
  • Um HS, Kang EB, Leem YH, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med. 2008;22(4):529–539. PMID: 18813861.
  • Lepore AC, Tolmie C, O’Donnell J, et al. Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. Neurobiol Dis. 2010;39(3):252–264. PMID: 20381620; PMCID: PMC2910141. doi:10.1016/j.nbd.2010.03.021
  • Patel BP, Hamadeh MJ. Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr. 2009;28(6):604–617. PMID: 19782443. doi:10.1016/j.clnu.2009.06.002
  • Kjøbsted R, Hingst JR, Fentz J, et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018;32(4):1741–1777. PMID: 29242278; PMCID: PMC5945561. doi:10.1096/fj.201700442R
  • Lim MA, Selak MA, Xiang Z, et al. Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease. J Neurosci. 2012;32(3):1123–1141. PMID: 22262909; PMCID: PMC3742882. doi:10.1523/JNEUROSCI.6554-10.2012
  • Stanford JA, Fowler SC. Dantrolene diminishes forelimb force-related tremor at doses that do not decrease operant behavior in the rat. Exp Clin Psychopharmacol. 2002;10(4):385–391. PMID: 12498335. doi:10.1037//1064-1297.10.4.385
  • Bethel-Brown CS, Morris JK, Stanford JA. Young and middle-aged rats exhibit isometric forelimb force control deficits in a model of early-stage Parkinson’s disease. Behav Brain Res. 2011;225(1):97–103. PMID: 21767573; PMCID: PMC3178104. doi:10.1016/j.bbr.2011.07.002
  • Stanford JA, Vorontsova E, Fowler SC. The relationship between isometric force requirement and forelimb tremor in the rat. Physiol Behav. 2000;69(3):285–293. PMID: 10869594. doi:10.1016/s0031-9384(99)00248-6
  • Smittkamp SE, Spalding HN, Brown JW, et al. Measures of bulbar and spinal motor function, muscle innervation, and mitochondrial function in ALS rats. Behav Brain Res. 2010;211(1):48–57. PMID: 20211206; PMCID: PMC2872192. doi:10.1016/j.bbr.2010.03.007
  • Ma D, Shuler JM, Kumar A, et al. Effects of tongue force training on bulbar motor function in the female SOD1-G93A rat model of amyotrophic lateral sclerosis. Neurorehabil Neural Repair. 2017;31(2):147–156. PMID: 27573800; PMCID: PMC5243852. doi:10.1177/1545968316666956
  • Connor NP, Ota F, Nagai H, Russell JA, Leverson G. Differences in age-related alterations in muscle contraction properties in rat tongue and hindlimb. J Speech Lang Hear Res. 2008;51(4):818–827. PMID: 18658053; PMCID: PMC2892886. doi:10.1044/1092-4388(2008/059)
  • Kletzien H, Russell JA, Leverson GE, Connor NP. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties. J Appl Physiol. 2013;114(4):472–481. PMID: 23264540; PMCID: PMC3568981. doi:10.1152/japplphysiol.01370.2012
  • Bonewald L. Use it or lose it to age: a review of bone and muscle communication. Bone. 2019;120:212–218. PMID: 30408611; PMCID: PMC6360108. doi:10.1016/j.bone.2018.11.002
  • McMenemey WH. Pathological aspects. Proc R Soc Med. 1962;55(12):1032–1033. PMID: 13932193; PMCID: PMC1897528.
  • Felmus MT, Patten BM, Swanke L. Antecedent events in amyotrophic lateral sclerosis. Neurology. 1976;26(2):167–172. PMID: 946326. doi:10.1212/wnl.26.2.167
  • Harwood CA, McDermott CJ, Shaw PJ. Physical activity as an exogenous risk factor in motor neuron disease (MND): a review of the evidence. Amyotroph Lateral Scler. 2009;10(4):191–204. PMID: 19263258. doi:10.1080/17482960802549739
  • Beghi E, Logroscino G, Chiò A, et al. Amyotrophic lateral sclerosis, physical exercise, trauma and sports: results of a population-based pilot case-control study. Amyotroph Lateral Scler. 2010;11(3):289–292. PMID: 20433412; PMCID: PMC3513269. doi:10.3109/17482960903384283
  • Turner MR, Wicks P, Brownstein CA, et al. Concordance between site of onset and limb dominance in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2011;82(8):853–854. PMID: 20562391. doi:10.1136/jnnp.2010.208413
  • Raymond J, Mehta P, Larson T, Factor-Litvak P, Davis B, Horton K. History of vigorous leisure-time physical activity and early onset amyotrophic lateral sclerosis (ALS), data from the national ALS registry: 2010–2018. Amyotroph Lateral Scler Frontotemporal Degener. 2021;24:1–10. PMID: 33896281. doi:10.1080/21678421.2021.1910308
  • Chiò A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128(Pt 3):472–476. PMID: 15634730. doi:10.1093/brain/awh373
  • Armon C. Sports and trauma in amyotrophic lateral sclerosis revisited. J Neurol Sci. 2007;262(1–2):45–53. PMID: 17681549. doi:10.1016/j.jns.2007.06.021
  • Duffy LM, Chapman AL, Shaw PJ, Grierson AJ. Review: the role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2011;37(4):336–352. PMID: 21299590. doi:10.1111/j.1365-2990.2011.01166.x
  • Dupuis L, Oudart H, René F, de Aguilar JL G, Loeffler JP. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A. 2004;101(30):11159–11164. PMID: 15263088; PMCID: PMC503756. doi:10.1073/pnas.0402026101
  • Dupuis L, Loeffler JP. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr Opin Pharmacol. 2009;9(3):341–346. PMID: 19386549. doi:10.1016/j.coph.2009.03.007
  • Desport JC, Preux PM, Magy L, et al. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr. 2001;74(3):328–334. PMID: 11522556. doi:10.1093/ajcn/74.3.328
  • Desport JC, Torny F, Lacoste M, Preux PM, Couratier P. Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis. 2005;2(3–4):202–207. PMID: 16909026. doi:10.1159/000089626
  • Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 2000;49(4):527–531. PMID: 10871188. doi:10.2337/diabetes.49.4.527
  • Ljubicic V, Khogali S, Renaud JM, Jasmin BJ. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol. 2012;302(1):C110–21. PMID: 21940670. doi:10.1152/ajpcell.00183.2011
  • Zhang JJ, Zhou QM, Chen S, Le WD. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neurosci Ther. 2018;24(12):1163–1174. PMID: 29656576; PMCID: PMC6489874. doi:10.1111/cns.12855
  • Allum JH, Dietz V, Freund HJ. Neuronal mechanisms underlying physiological tremor. J Neurophysiol. 1978;41(3):557–571. PMID: 660226. doi:10.1152/jn.1978.41.3.557
  • Hömberg V, Reiners K, Hefter H, Freund HJ. The muscle activity spectrum: spectral analysis of muscle force as an estimator of overall motor unit activity. Electroencephalogr Clin Neurophysiol. 1986;63(3):209–222. PMID: 2419077. doi:10.1016/0013-4694(86)90087-8
  • McAuley JH, Rothwell JC, Marsden CD. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Exp Brain Res. 1997;114(3):525–541. PMID: 9187289. doi:10.1007/pl00005662
  • Kalmar B, Edet-Amana E, Greensmith L. Treatment with a coinducer of the heat shock response delays muscle denervation in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(4):378–392. PMID: 22591194. doi:10.3109/17482968.2012.660953
  • Pérez-García MJ, Burden SJ. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep. 2012;2(3):497–502. PMID: 22939980; PMCID: PMC3462266. doi:10.1016/j.celrep.2012.08.004
  • Yoo YE, Ko CP. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice. PLoS One. 2012;7(5):e37258. PMID: 22606355; PMCID: PMC3351454. doi:10.1371/journal.pone.0037258
  • Krakora D, Mulcrone P, Meyer M, et al. Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther. 2013;21(8):1602–1610. PMID: 23712039; PMCID: PMC3734670. doi:10.1038/mt.2013.108
  • Thomsen GM, Gowing G, Latter J, et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci. 2014;34(47):15587–15600. PMID: 25411487; PMCID: PMC4298650. doi:10.1523/JNEUROSCI.2037-14.2014
  • Dadon-Nachum M, Ben-Yaacov K, Ben-Zur T, et al. Transplanted modified muscle progenitor cells expressing a mixture of neurotrophic factors delay disease onset and enhance survival in the SOD1 mouse model of ALS. J Mol Neurosci. 2015;55(3):788–797. PMID: 25330859. doi:10.1007/s12031-014-0426-0
  • Nizzardo M, Bucchia M, Ramirez A, et al. iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Hum Mol Genet. 2016;25(15):3152–3163. PMID: 27270413. doi:10.1093/hmg/ddw163
  • Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med. 2022;12(1):e657. PMID: 35064780; PMCID: PMC8783349. doi:10.1002/ctm2.657