54
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical and experimental studies of multiple sclerosis in Russia: experience of the leading national research centers

, , , , , , , & show all
Pages 83-90 | Published online: 06 Aug 2015

References

  • Kesserling J, Comi G, Thompson AJ, editors. Multiple Sclerosis: Recovery of Function and Neurorehabilitation. Cambridge University Press, New York; 2010.
  • Filippi M, Rocca MA. Cortical reorganisation in patients with MS. J Neurol Neurosurg Psychiatry. 2004;75(8):1087–1089.15258204
  • Filippi M, Rocca MA. Functional MR imaging in multiple sclerosis. Neuroimag Clin N Am. 2009;19(1):59–70.
  • Rocca MA, Colombo B, Falini A, et al Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol. 2005;4(10):618–626.16168930
  • Kulikova SN, Peresedova AV, Krotenkova MV, Bryukhov VV, Trifonova OV, Zavalishin IA. Dynamic study of reorganisation of the cortex and the structure of the conduction pathways in patients with relapsing-remitting multiple sclerosis and hand paralysis. Annaly klinicheskoi i eksperimentalnoi nevrologii. 2014;8(1):22–29.
  • Donaldson DI, Buckner RL. Effective paradigm design In: Jezzard P, Matthews PM, Smith SM, editors. Functional MRI, an Introduction to Methods. Oxford: Oxford University Press; 2003: 177–197.
  • Mancini L, Ciccarelli O, Manfredonia F, et al Short-term adaptation to a simple motor task: a physiological process preserved in multiple sclerosis. Neuroimage. 2009;45(2):500–511.19135155
  • Freedman MS, Selchen D, Arnold DL, et al Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci. 2013;40(3):307–323.23603165
  • Mikol DD, Barkhof F, Chang P, et al Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7(10):903–914.18789766
  • O’Connor P, Filippi M, Arnason B, et al 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8(10):889–897.19729344
  • Filippi M, Rocca MA, Camesasca F, et al Interferon β-1b and glatiramer acetate effects on permanent black hole evolution. Neurology. 2011;76(14):1222–1228.21464426
  • Arnon R, Aharoni R. Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm. 2009;116(11):1443–1449.19669693
  • Arnold DL, Narayanan S, Antel S. Neuroprotection with glatiramer acetate: evidence from the PreCISe trial. J Neurol. 2013;260(7): 1901–1906.23589190
  • Kieseier BC, Hartung HP. Interferon-beta and neuroprotection in multiple sclerosis-facts, hopes and phantasies. Exp Neurol. 2007;203(1): 1–4.17069803
  • Leray E, Yaouang J, Le Page E, et al Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(Pt7):1900–1913.20423930
  • Gabibov AG, Belogurov AA Jr, Lomakin YA, et al Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen. FASEB J. 2011;25(12):4211–4221. doi: 10.1096/fj.11-190769 Epub August 22, 2011.21859892
  • Owens GP, Bennett JL. Trigger, pathogen, or bystander: the complex nexus linking Epstein-Barr virus and multiple sclerosis. Mult Scler. 2012;18(9):1204–1208.22685062
  • Cross AH, Naismith RT. Established and novel disease-modifying treatments in multiple sclerosis. J Intern Med. 2014;275(4):350–363. doi: 10.1111/joim.12203 Epub March 11, 2014.24444048
  • Kurtzke JF. Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev. 1993;6(4):382–427.8269393
  • Levin LI, Munger KL, O’Reilly EJ, et al Primary infection with the Epstein-Barr virus and the risk of multiple sclerosis. Ann Neurol. 2010;67:824–830.33.20517945
  • Pender MP. Preventing and curing multiple sclerosis by controlling Epstein-Barr virus infection. Autoimmun Rev. 2009;8:563–568.19254880
  • Reindl MP, Kuenz BB, Berger T. B cells and antibodies in MS results. Probl Cell Differ. 2010;51:99–113.
  • Hikada M, Zouali M. Multistoried roles for B lymphocytes in autoimmunity. Nat Immunol. 2010;11:1065–1068.21079626
  • Kabat EA, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med. 4: 653–662.18856761
  • Chamczuk AJ, Ursell M, O’Connor P, Jackowski G, Moscarello MA. A rapid ELISA-based serum assay for myelin basic protein in multiple sclerosis. J Immunol Methods. 2002;262:21–27.11983216
  • Ponomarenko NA, Durova OM, Vorobiev II, et al Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunol Lett. 2006;103(1):45–50. 10.1016/j.imlet.2005.10.006.16297986
  • Berger T, Rubner P, Schautzer F, et al Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003;349(2):139–145. 10.1056/NEJMoa022328.12853586
  • Lomakin YA, Zakharova MY, Stepanov AV, et al Heavy-light chain interrelations of MS-associated immunoglobulins probed by deep sequencing and rational variation. Mol Immunol. 2014;62(2):305–314. 10.1016/j.molimm.2014.01.013.24534716
  • Gabibov AG, Ponomarenko NA, Tretyak EB, Paltsev MA, Suchkov SV. Catalytic autoantibodies in clinical autoimmunity and modern medicine. Autoimmun Rev. 2006;5(5):324–330. Epub February 28, 2006.16782557
  • Durova OM, Vorobiev II, Smirnov IV, et al Strategies for induction of catalytic antibodies toward HIV-1 glycoprotein gp120 in autoimmune prone mice. Mol Immunol. 2009;47(1):87–95. doi:10.1016/j.19201029
  • Mahendra A, Sharma M, Rao DN, et al Antibody-mediated catalysis: induction and therapeutic relevance. Autoimmun Rev. 2013;12(6):648–652. doi:10.1016/j.autrev.2012.10.009.23207286
  • Doronin VB, Parkhomenko TA, Castellazzi M, et al Comparison of antibodies hydrolyzing myelin basic protein from the cerebrospinal fluid and serum of patients with multiple sclerosis. PLoS One. 2014;9(9):e107807.25265393
  • Planque SA, Nishiyama Y, Hara M, et al Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem. 20149;289(19):13243–13258. 10.1074/jbc.M114.557231 Epub March 19, 2014.24648510
  • Belogurov A Jr, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr Jekyll and Mr Hyde. Bioessays. 2009;31(11):1161–1171.19795406
  • Ponomarenko NA, Durova OM, Vorobiev II, et al Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods. 2002;269(1–2):197–211.12379362
  • Ponomarenko NA, Durova OM, Vorobiev II, et al Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci U S A. 2006;103(2):281–286. Epub December 30, 2005.16387849
  • Belogurov AA Jr, Kurkova IN, Friboulet A, et al Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. J Immunol. 2008;180(2): 1258–1267.18178866
  • Nastasijevic B, Wright BR, Smestad J, Warrington AE, Rodriguez M, Maher LJ 3rd. Remyelination induced by a DNA aptamer in a mouse model of multiple sclerosis. PLoS One. 2012;7(6):e39595 10.1371/journal.pone.0039595.22761835
  • Warren KG, Catz I, Ferenczi LZ, Krantz MJ. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II- defined cohort of patients with progressive multiple sclerosis: results of a 24-month double- blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol. 2006;13(8):887–895.16879301
  • Fontoura P, Garren H. Multiple sclerosis therapies: molecular mechanisms and future Results Probl Cell Differ. 2010;51:259–285.
  • Belogurov AA Jr, Zargarova TA, Turobov VI, et al Suppression of ongoing experimental allergic encephalomyelitis in DA rats by novel peptide drug, structural part of human myelin basic protein 46–62. Autoimmunity. 2009;42(4):362–364.19811302
  • Belogurov AA Jr, Stepanov AV, Smirnov IV, et al Liposome-encapsulated peptides protect against experimental allergic encephalitis. FASEB J. 2013;27(1):222–231. 10.1096/fj.12-213975 Epub October 9, 2012.23047895
  • Basler M, Mundt S, Muchamuel T, et al Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis. EMBO Mol Med. 2014;6(2):226–238. 10.1002/emmm.201303543.24399752
  • Wehenkel M, Ban J-O, Ho Y-K, Carmony KC, Hong JT, Kim KB. A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br J Cancer. 2012;107(1):53–62. 10.1038/bjc.2012.243.22677907
  • Belogurov A Jr, Kuzina E, Kudriaeva A, et al Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity. FASEB J. 2015;29(5):1901–1913.25634956
  • Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125(3):539–548. 10.1242/jcs.093567.22389393
  • Belogurov A Jr, Kudriaeva A, Kuzina E, et al Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation. J Biol Chem. 2014;289(25):17758–17766. 10.1074/jbc.M113.544247 Epub April 16, 2014.24739384
  • Kuzina E, Kudriaeva A, Smirnov I, Dubina MV, Gabibov A, Belogurov A Jr. Glatiramer acetate and nanny proteins restrict access of the multiple sclerosis autoantigen myelin basic protein to the 26s proteasome. Biomed Res Int. 2014;2014:926394 10.1155/2014/926394 Epub September 8, 2014.25276831
  • Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A. 2004;101(Suppl 2):14599–14606. 10.1073/pnas.0404874101.15306684
  • Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I. The relevance of animal models in multiple sclerosis research. Pathophysiology. 2011;18(1):21–29.20537877
  • Glinka EM, Edelweiss EF, Sapozhnikov AM, et al A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene. 2006;366(1):97–103.16300908
  • Deyev SM, Lebedenko EN. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 2009;1(1):32–50.22649585
  • Balandin TG, Edelweiss E, Andronova NV, et al Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts Invest New Drugs. 2011;29(1): 22–32.19789841
  • Stepanov AV, Belogurov AA Jr, Ponomarenko NA, et al Design of targeted B cell killing agents. PLoS One. 2011;6(6):e20991 10.1371/journal.pone.0020991 Epub June 6, 2011.21677771
  • Aleksandar D, Bharath W, Laurie Z, Moses R. Deletion of virus-specific T-cells enhances remyelination in a model of multiple sclerosis. J Neurol Transl Neurosci. 2014;2(1):1032.25383388