508
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Eye Movement Abnormalities in Glaucoma Patients: A Review

ORCID Icon, , &
Pages 83-114 | Received 11 Feb 2022, Accepted 09 Jul 2022, Published online: 08 Sep 2022

References

  • Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39–57. doi:10.1016/S1350-9462(98)00014-7
  • Ramulu PY. Glaucoma and reading speed: the Salisbury eye evaluation project. Arch Ophthalmol. 2009;127(1):82. doi:10.1001/archophthalmol.2008.523
  • Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Glaucoma and on-road driving performance. Invest Ophthalmol Vis Sci. 2008;49(7):3035–3041. doi:10.1167/iovs.07-1609
  • Shabana N, Pérès VC, Carkeet A, Chew PTK. Motion perception in glaucoma patients: a review. Surv Ophthalmol. 2003;48(1):92–106. doi:10.1016/S0039-6257(02)00401-0
  • Yücel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118(3):378–384. doi:10.1001/archopht.118.3.378
  • Perry VH, Cowey A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience. 1984;12(4):1125–1137. doi:10.1016/0306-4522(84)90007-1
  • Koller K, Rafal RD. Saccade latency bias toward temporal hemifield: evidence for role of retinotectal tract in mediating reflexive saccades. Neuropsychologia. 2019;128:276–281. doi:10.1016/j.neuropsychologia.2018.01.028
  • Lawlor M, Danesh-Meyer H, Levin LA, Davagnanam I, De Vita E, Plant GT. Glaucoma and the brain: trans-synaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018;63(3):296–306. doi:10.1016/j.survophthal.2017.09.010
  • Gupta N, Ang L-C, LNd T, Bidaisee L, Yücel YH. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–678. doi:10.1136/bjo.2005.086769
  • Garaci FG, Bolacchi F, Cerulli A, et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T Diffusion-Tensor MR Imaging. Radiology. 2009;252(2):496–501. doi:10.1148/radiol.2522081240
  • Yücel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22(4):465–481. doi:10.1016/S1350-9462(03)00026-0
  • Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1991;32(3):484–491.
  • Boucard CC, Hernowo AT, Maguire RP, et al. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain. 2009;132(Pt 7):1898–1906. doi:10.1093/brain/awp119
  • Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–768. doi:10.1016/j.ophtha.2008.01.013
  • Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–5418. doi:10.1167/iovs.08-2228
  • Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–266. doi:10.1016/j.ophtha.2009.06.058
  • Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21(2):106–111. doi:10.1097/ICU.0b013e32833651d8
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111–147ra111. doi:10.1126/scitranslmed.3003748
  • Wostyn P, De Groot V, Van Dam D, Audenaert K, Killer HE, De Deyn PP. The glymphatic hypothesis of glaucoma: a unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. Biomed Res Int. 2017;2017:5123148–5123148. doi:10.1155/2017/5123148
  • Wostyn P, Van Dam D, Audenaert K, Killer HE, De Deyn PP, De Groot V. A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS. 2015;12:16. doi:10.1186/s12987-015-0012-z
  • Ong K, Farinelli A, Billson F, Houang M, Stern M. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology. 1995;102(11):1632–1638. doi:10.1016/S0161-6420(95)30816-0
  • Stroman GA, Stewart WC, Golnik KC, Curé JK, Olinger RE. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995;113(2):168–172. doi:10.1001/archopht.1995.01100020050027
  • Bogorodzki P, Piątkowska-Janko E, Szaflik J, Szaflik JP, Gacek M, Grieb P. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps. PLoS One. 2014;9(4):e93682. doi:10.1371/journal.pone.0093682
  • Yu L, Xie L, Dai C, et al. Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity. PLoS One. 2015;10(3):e0121960. doi:10.1371/journal.pone.0121960
  • Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012;33(1):128–134. doi:10.3174/ajnr.A2714
  • Giorgio A, Zhang J, Costantino F, De Stefano N, Frezzotti P. Diffuse brain damage in normal tension glaucoma. Hum Brain Mapp. 2018;39(1):532–541. doi:10.1002/hbm.23862
  • Hanekamp S, Ćurčić-blake B, Caron B, et al. White matter alterations in glaucoma and monocular blindness differ outside the visual system. Sci Rep. 2021;11(1):6866. doi:10.1038/s41598-021-85602-x
  • Bisley JW, Goldberg ME. Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci. 2010;33:1–21. doi:10.1146/annurev-neuro-060909-152823
  • Connolly JD, Goodale MA, Goltz HC, Munoz DP. fMRI activation in the human frontal eye field is correlated with saccadic reaction time. J Neurophysiol. 2005;94(1):605–611. doi:10.1152/jn.00830.2004
  • Cosman JD, Lowe KA, Zinke W, Woodman GF, Schall JD. Prefrontal Control of Visual Distraction. Curr Biol. 2018;28(3):414–420.e413. doi:10.1016/j.cub.2017.12.023
  • Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80(3):953–978. doi:10.1152/physrev.2000.80.3.953
  • Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the Purkinje cells of the cerebellum. Nature. 2015;526(7573):439–442. doi:10.1038/nature15693
  • Catz N, Dicke Peter W, Thier P. Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. Proce National Acad Sci. 2008;105(20):7309–7314. doi:10.1073/pnas.0706032105
  • Wolf C, Lappe M. Top-down control of saccades requires inhibition of suddenly appearing stimuli. Atten Percept Psychophys. 2020;82(8):3863–3877. doi:10.3758/s13414-020-02101-3
  • Thakkar KN, Heiligenberg FMZ, Neggers R. Speed of saccade execution and inhibition associated with fractional anisotropy in distinct fronto‐frontal and fronto‐striatal white matter pathways. Hum Brain Mapp. 2016;37(8):2811–2822. doi:10.1002/hbm.23209
  • Simó L, Krisky C, Sweeney J. Functional neuroanatomy of anticipatory behavior: dissociation between sensory-driven and memory-driven systems. Cerebral Cortex. 2005;15:1982–1991. doi:10.1093/cercor/bhi073
  • Sweeney JA, Luna B, Keedy SK, McDowell JE, Clementz BA. fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. NeuroImage. 2007;36:T54–T60. doi:10.1016/j.neuroimage.2007.03.018
  • Ludwig CJ, Gilchrist ID. Stimulus-driven and goal-driven control over visual selection. J Exp Psychol Hum Percept Perform. 2002;28(4):902–912. doi:10.1037/0096-1523.28.4.902
  • Nyffeler T, Hubl D, Wurtz P, Wiest R, Hess CW, Müri RM. Spontaneous recovery of visually-triggered saccades after focal lesions of the frontal and parietal eye fields: a combined longitudinal oculomotor and fMRI study. Clin Neurophysiol. 2011;122(6):1203–1210. doi:10.1016/j.clinph.2010.08.026
  • Wolf C, Lappe M. Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements. Cogn Neurodyn. 2021;15(4):547–568. doi:10.1007/s11571-020-09661-y
  • Snegireva N, Derman W, Patricios J, Welman KE. Eye tracking technology in sports-related concussion: a systematic review and meta-analysis. Physiol Meas. 2018;39(12):12TR01. doi:10.1088/1361-6579/aaef44
  • Van Der Stigchel S, Bethlehem RAI, Klein BP, Berendschot TTJM, Nijboer T, Dumoulin SO. Macular degeneration affects eye movement behavior during visual search. Front Psychol. 2013;4. doi:10.3389/fpsyg.2013.00579
  • Prasad S, Galetta SL. Eye movement abnormalities in multiple sclerosis. Neurol Clin. 2010;28(3):641–655. doi:10.1016/j.ncl.2010.03.006
  • Wong A. Neuro-ophthalmology. neuronal control of eye movements. J Neuro Ophthalmol. 2008;28(4):76–89. doi:10.1097/01.wno.0000342371.46043.b8
  • Crawford TJ, Higham S, Renvoize T, et al. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol Psychiatry. 2005;57(9):1052–1060. doi:10.1016/j.biopsych.2005.01.017
  • Nij Bijvank JA, Petzold A, Coric D, et al. Saccadic delay in multiple sclerosis: a quantitative description. Vision Res. 2020;168:33–41. doi:10.1016/j.visres.2020.01.003
  • McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68(3):255–270. doi:10.1016/j.bandc.2008.08.016
  • Sparks DL. The brainstem control of saccadic eye movements. Nat Rev Neurosci. 2002;3(12):952–964. doi:10.1038/nrn986
  • Raybourn MS, Keller EL. Colliculoreticular organization in primate oculomotor system. J Neurophysiol. 1977;40(4):861–878. doi:10.1152/jn.1977.40.4.861
  • Miyashita N, Hikosaka O. Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey. Exp Brain Res. 1996;112(2):187–196. doi:10.1007/BF00227637
  • Sanders M, Warrington E, Marshall J, Wieskrantz L. Blindsight”: vision in a field defect. Lancet. 1974;303(7860):707–708. doi:10.1016/S0140-6736(74)92907-9
  • Weiskrantz L, Warrington E, Sanders M, Marshall J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain. 1974;97(1):709–728. doi:10.1093/brain/97.1.709
  • McPeek RM, Keller EL. Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci. 2004;7(7):757–763. doi:10.1038/nn1269
  • Poppel E, Held R, Frost D. Residual visual function after brain wounds involving the central visual pathways in man. Nature. 1973;243(5405):2295–2296. doi:10.1038/243295a0
  • Kato R, Takaura K, Ikeda T, Yoshida M, Isa T. Contribution of the retino‐tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur J Neurosci. 2011;33(11):1952–1960. doi:10.1111/j.1460-9568.2011.07729.x
  • Cowey A, Stoerig P. Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: implications for residual vision. Exp Brain Res. 1989;75(3):631–638. doi:10.1007/BF00249914
  • Lyon DC, Nassi JJ, Callaway EM. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron. 2010;65(2):270–279. doi:10.1016/j.neuron.2010.01.003
  • Berman RA, Wurtz RH. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J Neurosci. 2010;30(18):6342–6354. doi:10.1523/JNEUROSCI.6176-09.2010
  • Sincich LC, Park KF, Wohlgemuth MJ, Horton JC. Bypassing V1: a direct geniculate input to area MT. Nat Neurosci. 2004;7(10):1123–1128. doi:10.1038/nn1318
  • Stepniewska I, Qi HX, Kaas JH. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? Eur J Neurosci. 1999;11(2):469–480. doi:10.1046/j.1460-9568.1999.00461.x
  • Findlay JM, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci. 1999;22(4):661–674. doi:10.1017/S0140525X99002150
  • Kanjee R, Yücel YH, Steinbach MJ, González EG, Gupta N. Delayed saccadic eye movements in glaucoma. Eye Brain. 2012;4:63–68. doi:10.2147/EB.S38467
  • Ballae Ganeshrao S, Jaleel A, Madicharla S, et al. Comparison of saccadic eye movements among the high tension glaucoma, primary angle closure glaucoma, and normal tension glaucoma. J Glaucoma. 2020;2:548.
  • Lamirel C, Milea D, Cochereau I, Duong M-H, Lorenceau J. Impaired Saccadic eye movement in primary open-angle glaucoma. J Glaucoma. 2014;23(1):23–32. doi:10.1097/IJG.0b013e31825c10dc
  • Mazumdar D, Pel JM, Panday M, et al. Comparison of saccadic reaction time between normal and glaucoma using an eye movement perimeter. Indian J Ophthalmol. 2014;62(1):55. doi:10.4103/0301-4738.126182
  • Najjar RP, Sharma S, Drouet M, et al. Disrupted Eye movements in preperimetric primary open-angle glaucoma. Invest Opthalmol Visual Sci. 2017;58(4):2430. doi:10.1167/iovs.16-21002
  • Tatham AJ, Murray IC, McTrusty AD, et al. Speed and accuracy of saccades in patients with glaucoma evaluated using an eye tracking perimeter. BMC Ophthalmol. 2020;20(1):259. doi:10.1186/s12886-020-01528-4
  • Kalesnykas RP, Hallett PE. Retinal eccentricity and the latency of eye saccades. Vision Res. 1994;34(4):517–531. doi:10.1016/0042-6989(94)90165-1
  • Wheeless LL, Cohen GH, Boynton RM. Luminance as a parameter of the eye-movement control system. JOSA. 1967;57(3):394–400. doi:10.1364/JOSA.57.000394
  • Mazumdar D, Meethal NSK, Panday M, et al. Effect of age, sex, stimulus intensity, and eccentricity on saccadic reaction time in eye movement perimetry. Transl Vis Sci Technol. 2019;8(4):13–13. doi:10.1167/tvst.8.4.13
  • Williams C, Azzopardi P, Cowey A. Nasal and temporal retinal ganglion cells projecting to the midbrain: implications for “blindsight”. Neuroscience. 1995;65(2):577–586. doi:10.1016/0306-4522(94)00489-R
  • Irving EL, Steinbach MJ, Lillakas L, Babu RJ, Hutchings N. Horizontal saccade dynamics across the human life span. Invest Ophthalmol Vis Sci. 2006;47(6):2478–2484. doi:10.1167/iovs.05-1311
  • Schik G, Mohr S, Hofferberth B. Effect of aging on saccadic eye movements to visual and auditory targets. Int Tinnitus J. 2000;6(2):154–159.
  • Warren DE, Thurtell MJ, Carroll JN, Wall M. Perimetric evaluation of saccadic latency, saccadic accuracy, and visual threshold for peripheral visual stimuli in young compared with older adults. Invest Ophthalmol Vis Sci. 2013;54(8):5778–5787. doi:10.1167/iovs.13-12032
  • Thepass G, Lemig H, Vermeer K, Van der Steen J, Pel J. Slowed saccadic reaction times in seemingly normal parts of glaucomatous visual fields. Front Med. 2021;8:679297. doi:10.3389/fmed.2021.679297
  • Condy C, Rivaud-Péchoux S, Ostendorf F, Ploner CJ, Gaymard B. Neural substrate of antisaccades: role of subcortical structures. Neurology. 2004;63(9):1571–1578. doi:10.1212/01.WNL.0000142990.44979.5A
  • Coe BC, Munoz DP. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos Trans R Soc Lond B Biol Sci. 2017;372(1718):20160192. doi:10.1098/rstb.2016.0192
  • Mardanbegi D, Kurauchi ATN, Morimoto CH. An investigation of the distribution of gaze estimation errors in head mounted gaze trackers using polynomial functions. J Eye Mov Res. 2018;11(3). doi:10.16910/jemr.11.3.5
  • Fischer B, Weber H. Express saccades and visual attention. Behav Brain Sci. 1993;16(3):553–567. doi:10.1017/S0140525X00031575
  • Haushofer J, Schiller PH, Kendall G, Slocum WM, Tolias AS. Express saccades: the conditions under which they are realized and the brain structures involved. J Vis. 2002;2(7):174–174. doi:10.1167/2.7.174
  • Nyström M, Holmqvist K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behav Res Methods. 2010;42(1):188–204. doi:10.3758/BRM.42.1.188
  • Krauzlis RJ, Goffart L, Hafed ZM. Neuronal control of fixation and fixational eye movements. Philosophical Transactions Royal Soc B. 2017;372(1718):20160205. doi:10.1098/rstb.2016.0205
  • Crabb DP, Smith ND, Rauscher FG, et al. Exploring eye movements in patients with glaucoma when viewing a driving scene. PLoS One. 2010;5(3):e9710. doi:10.1371/journal.pone.0009710
  • Lee SS-Y, Black AA, Wood JM. Eye movements of drivers with glaucoma on a visual recognition slide test. Optometry Vision Sci. 2019;96(7):484–491. doi:10.1097/OPX.0000000000001395
  • Cheong AMY, Geruschat DR, Congdon N. Traffic gap judgment in people with significant peripheral field loss. Optometry Vision Sci. 2008;85(1):26–36. doi:10.1097/OPX.0b013e31815ed6fd
  • Zabel K, Zabel P, Suwala K, et al. Alterations in fixation indices in primary open-angle glaucoma by microperimetry. J Clin Med. 2022;11(9):2368. doi:10.3390/jcm11092368
  • Møllenbach E, Hansen JP, Lillholm M. Eye movements in gaze interaction. Invest Opthalmol Visual Sci. 2013;16.
  • Subramanian V, Jost RM, Birch EE, Quantitative A. Study of fixation stability in amblyopia. Invest Opthalmol Visual Sci. 2013;54(3):1998. doi:10.1167/iovs.12-11054
  • Nij Bijvank JA, Petzold A, Coric D, et al. Quantification of visual fixation in multiple sclerosis. Invest Opthalmol Visual Sci. 2019;60(5):1372. doi:10.1167/iovs.18-26096
  • Stuart S, Parrington L, Martini D, Peterka R, Chesnutt J, King L. The measurement of eye movements in mild traumatic brain injury: a structured review of an emerging area. Front Sports Active Living. 2020;2:5. doi:10.3389/fspor.2020.00005
  • Tarita-Nistor L, Brent MH, Steinbach MJ, González EG. Fixation stability during binocular viewing in patients with age-related macular degeneration. Invest Opthalmol Visual Sci. 2011;52(3):1887. doi:10.1167/iovs.10-6059
  • Asfaw DS, Jones PR, Mönter VM, Smith ND, Crabb DP. Does Glaucoma alter eye movements when viewing images of natural scenes? A between-eye study. Invest Opthalmol Visual Sci. 2018;59(8):3189. doi:10.1167/iovs.18-23779
  • Lee SS-Y, Black AA, Wood JM. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS One. 2017;12(6):e0178876. doi:10.1371/journal.pone.0178876
  • Smith ND, Crabb DP, Glen FC, Burton R, Garway-heath david F. Eye movements in patients with glaucoma when viewing images of everyday scenes. Seeing Perceiving. 2012;25(5):471–492. doi:10.1163/187847612X634454
  • Wiecek E, Pasquale LR, Fiser J, Dakin S, Bex PJ. Effects of peripheral visual field loss on eye movements during visual search. Front Psychol. 2012;3. doi:10.3389/fpsyg.2012.00472
  • Kübler TC, Kasneci E, Rosenstiel W, et al. Driving with glaucoma: task performance and gaze movements. Optometry Vision Sci. 2015;92(11):1037–1046. doi:10.1097/OPX.0000000000000702
  • Prado Vega R, Leeuwen PM, Rendón Vélez E, Lemij HG, Winter JCF. Obstacle avoidance, visual detection performance, and eye-scanning behavior of glaucoma patients in a driving simulator: a preliminary study. PLoS One. 2013;8(10):e77294. doi:10.1371/journal.pone.0077294
  • Longhin E, Convento E, Pilotto E, et al. Static and dynamic retinal fixation stability in microperimetry. Can J Ophthalmol. 2013;48(5):375–380. doi:10.1016/j.jcjo.2013.05.021
  • Montesano G, Crabb DP, Jones PR, Fogagnolo P, Digiuni M, Rossetti LM. Evidence for alterations in fixational eye movements in glaucoma. BMC Ophthalmol. 2018;18(1):191. doi:10.1186/s12886-018-0870-7
  • Shi Y, Liu M, Wang X, Zhang C, Huang P. Fixation behavior in primary open angle glaucoma at early and moderate stage assessed by the microPerimeter MP-1:. J Glaucoma. 2013;22(2):169–173. doi:10.1097/IJG.0b013e3182311dce
  • Murata N, Miyamoto D, Togano T, Fukuchi T. Evaluating silent reading performance with an eye tracking system in patients with glaucoma. PLoS One. 2017;12(1):e0170230. doi:10.1371/journal.pone.0170230
  • Crossland MD, Sims M, Galbraith RF, Rubin GS. Evaluation of a new quantitative technique to assess the number and extent of preferred retinal loci in macular disease. Vision Res. 2004;44(13):1537–1546. doi:10.1016/j.visres.2004.01.006
  • Fujii GY, De Juan E, Humayun MS, Sunness JS, Chang TS, Rossi JV. Characteristics of visual loss by scanning laser ophthalmoscope microperimetry in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol. 2003;136(6):1067–1078. doi:10.1016/S0002-9394(03)00663-9
  • Amore FM, Fasciani R, Silvestri V, et al. Relationship between fixation stability measured with MP-1 and reading performance. Ophthalmic Phys Optics. 2013;33(5):611–617. doi:10.1111/opo.12048
  • Kameda T, Tanabe T, Hangai M, Ojima T, Aikawa H, Yoshimura N. Fixation behavior in advanced stage glaucoma assessed by the MicroPerimeter MP-1. Jpn J Ophthalmol. 2009;53(6):580–587. doi:10.1007/s10384-009-0735-y
  • Molina-Martín A, Pérez-Cambrodí RJ, Piñero DP. Current clinical application of microperimetry: a review. Semin Ophthalmol. 2018;33(5):620–628. doi:10.1080/08820538.2017.1375125
  • Nij Bijvank JA, Petzold A, Balk LJ, et al. A standardized protocol for quantification of saccadic eye movements: dEMoNS. PLoS One. 2018;13(7):e0200695. doi:10.1371/journal.pone.0200695
  • Traynis I, De moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. Prevalence and Nature of Early Glaucomatous Defects in the Central 10° of the Visual Field. JAMA Ophthalmol. 2014;132(3):291–297. doi:10.1001/jamaophthalmol.2013.7656
  • Calen Walshe R, Nuthmann A. Asymmetrical control of fixation durations in scene viewing. Vision Res. 2014;100:38–46. doi:10.1016/j.visres.2014.03.012
  • Rayner K, Castelhano MS. Eye Movements During Reading, Scene Perception, Visual Search, and While Looking at Print Advertisements. Taylor & Francis Group/Lawrence Erlbaum Associates; 2008.
  • Buttner U, Kremmyda O. Smooth Pursuit Eye Movements and Optokinetic Nystagmus. Munich: Karger; 2007.
  • Ruehl RM, Hinkel C, Bauermann T, Eulenburg P. Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem. Brain Struct Funct. 2017;222(9):4163–4185. doi:10.1007/s00429-017-1461-8
  • Garbutt S. Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2004;75(10):1386–1394. doi:10.1136/jnnp.2003.027367
  • Poblano A, Ishiwara K, Ortega P, Mora L, Pineda G, Arriaga E. Thinner abuse alters optokinetic nystagmus parameters. Arch Med Res. 2000;31(2):182–185. doi:10.1016/S0188-4409(00)00047-3
  • Lipper S. Impairment of Optokinetic nystagmus in patients with tardive dyskinesia. Arch Gen Psychiatry. 1973;28(3):331. doi:10.1001/archpsyc.1973.01750330031005
  • Valmaggia C, Rütsche A, Baumann A, et al. Age related change of optokinetic nystagmus in healthy subjects: a study from infancy to senescence. Br J Ophthalmol. 2004;88(12):1577. doi:10.1136/bjo.2004.044222
  • Clément G, Lathan CE. Effects of static tilt about the roll axis on horizontal and vertical optokinetic nystagmus and optokinetic after-nystagmus in humans. Exp Brain Res. 1991;84(2):335–341. doi:10.1007/BF00231454
  • Knapp C, Proudlock F, Gottlob I. OKN asymmetry in human subjects: a literature review. Strabismus. 2013;21:37–49. doi:10.3109/09273972.2012.762532
  • Severt W, Maddess T, Ibbotson M. Employing following eye movements to discriminate normal from glaucoma subjects. Clin Experiment Ophthalmol. 2000;28(3):172–174. doi:10.1046/j.1442-9071.2000.00295.x
  • Doustkouhi SM, Turnbull PRK, Dakin SC. The effect of simulated visual field loss on optokinetic nystagmus. Transl Vis Sci Technol. 2020;9(3):25. doi:10.1167/tvst.9.3.25
  • Shin YJ, Park KH, Hwang J-M, Wee WR, Lee JH, Lee IB. Objective measurement of visual acuity by optokinetic response determination in patients with ocular diseases. Am J Ophthalmol. 2006;141(2):327–332. doi:10.1016/j.ajo.2005.09.025
  • Tong J, Wang J, Sun F. Dual-directional optokinetic nystagmus elicited by the intermittent display of gratings in primary open-angle glaucoma and normal eyes. Curr Eye Res. 2002;25(6):355–362. doi:10.1076/ceyr.25.6.355.14236
  • Abe H, Hasegawa S, Takagi M, Yoshizawa T, Usui T. Contrast sensitivity for the stationary and drifting vertical stripe patterns in patients with optic nerve disorders. Ophthalmologica. 1993;207(2):100–105. doi:10.1159/000310413
  • Gracitelli C, Abe R, Diniz-Filho A, Vaz-de-lima F, Paranhos A, Medeiros F. Ophthalmology Issues in Schizophrenia. Curr Psychiatry Rep. 2015;17:569. doi:10.1007/s11920-015-0569-x
  • Klistorner AI, Graham SL. Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential. J Glaucoma. 1999;8(2):140–148. doi:10.1097/00061198-199904000-00010
  • Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95(3):357–363. doi:10.1016/S0161-6420(88)33176-3
  • Weber AJ, Harman CD. Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci. 2005;46(9):3197–3207. doi:10.1167/iovs.04-0834
  • Ansari EA, Morgan JE, Snowden RJ. Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension. Br J Ophthalmol. 2002;86(10):1131–1135. doi:10.1136/bjo.86.10.1131
  • Maunsell JH, Nealey TA, DePriest DD. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990;10(10):3323. doi:10.1523/JNEUROSCI.10-10-03323.1990
  • Burr DC, Morrone MC, Ross J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature. 1994;371(6497):511–513. doi:10.1038/371511a0
  • Burton R, Crabb DP, Smith ND, Glen FC, Garway-Heath DF. Glaucoma and Reading: exploring the Effects of Contrast Lowering of Text. Optometry Vision Sci. 2012;89(9):1282–1287. doi:10.1097/OPX.0b013e3182686165
  • Burton R, Smith ND, Crabb DP. Eye movements and reading in glaucoma: observations on patients with advanced visual field loss. Graefe’s Arch Clin Exp Ophthalmol. 2014;252(10):1621–1630. doi:10.1007/s00417-014-2752-x
  • Cerulli A, Cesareo M, Ciuffoletti E, et al. Evaluation of eye movements pattern during reading process in patients with glaucoma: a microperimeter study. Invest Opthalmol Visual Sci. 2013;6.
  • Ishii M, Seki M, Harigai R, Abe H, Fukuchi T. Reading performance in patients with glaucoma evaluated using the MNREAD charts. Jpn J Ophthalmol. 2013;57(5):471–474. doi:10.1007/s10384-013-0259-3
  • Smith ND, Glen FC, Mönter VM, Crabb DP. Using eye tracking to assess reading performance in patients with glaucoma: a within-person study. J Ophthalmol. 2014;2014:1–10. doi:10.1155/2014/120528
  • Kasneci E, Sippel K, Aehling K, et al. Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking. PLoS One. 2014;9(2):e87470. doi:10.1371/journal.pone.0087470
  • Lee SS-Y, Black AA, Wood JM. Scanning behavior and daytime driving performance of older adults with glaucoma. J Glaucoma. 2018;27(6):558–565. doi:10.1097/IJG.0000000000000962
  • Martínez-Almeida Nistal I, Lampreave Acebes P, Martínez-de-la-casa JM, Sánchez-González P. Validation of virtual reality system based on eye-tracking technologies to support clinical assessment of glaucoma. Eur J Ophthalmol. 2020;1:112067212097604.
  • Wood JM, Black AA, Mallon K, Thomas R, Owsley C. Glaucoma and driving: on-road driving characteristics. PLoS One. 2016;11(7):e0158318. doi:10.1371/journal.pone.0158318
  • Sippel K. Smooth pursuit eye movements and optokinetic nystagmus. In: Straube A, Büttner U, editors. Neuro-ophthalmology: Neuronal Control of Eye Moments. Basel [Switzerland]; New York: Karger. 2007:76–89.
  • Crabb DP, Smith ND, Glen FC, Burton R, Garway-Heath DF. How Does Glaucoma Look? Ophthalmology. 2013;120(6):1120–1126. doi:10.1016/j.ophtha.2012.11.043
  • Nelson P, Aspinall P, O’Brien C. Patients’ perception of visual impairment in glaucoma: a pilot study. Br J Ophthalmol. 1999;83(5):546–552. doi:10.1136/bjo.83.5.546
  • Altangerel U, Spaeth GL, Steinmann WC. Assessment of function related to vision (AFREV). Ophthalmic Epidemiol. 2006;13(1):67–80. doi:10.1080/09286580500428500
  • Chen A-H, Jufri S, Congdon N. The impact of glaucomatous visual field defects on speed and eye movements during reading. Siriraj Med J. 2021;73(1):17–25. doi:10.33192/Smj.2021.03
  • Burton R, Saunders LJ, Crabb DP. Areas of the visual field important during reading in patients with glaucoma. Jpn J Ophthalmol. 2015;59(2):94–102. doi:10.1007/s10384-014-0359-8
  • Murata H, Hirasawa H, Aoyama Y, et al. Identifying areas of the visual field important for quality of life in patients with glaucoma. PLoS One. 2013;8(3):e58695. doi:10.1371/journal.pone.0058695
  • Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7(1):12–36. doi:10.1002/dys.186
  • Stein J, Talcott J. Impaired neuronal timing in developmental dyslexia—the magnocellular hypothesis. Dyslexia. 1999;5(2):59–77. doi:10.1002/(SICI)1099-0909(199906)5:2<59::AID-DYS134>3.0.CO;2-F
  • Smith ND, Glen FC, Crabb DP. Eye movements during visual search in patients with glaucoma. BMC Ophthalmol. 2012;12(1):45. doi:10.1186/1471-2415-12-45
  • Glen FC, Smith ND, Crabb DP. Saccadic eye movements and face recognition performance in patients with central glaucomatous visual field defects. Vision Res. 2013;82:42–51. doi:10.1016/j.visres.2013.02.010
  • Crabb DP, Smith ND, Zhu H. What’s on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths. Front Aging Neurosci. 2014;6. doi:10.3389/fnagi.2014.00312
  • Wetzel SJ. Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders. Physical Review E. 2017;96(2):022140. doi:10.1103/PhysRevE.96.022140
  • Soans RS, Grillini A, Saxena R, Renken RJ, Gandhi TK, Cornelissen FW. Eye-movement-based assessment of the perceptual consequences of glaucomatous and neuro-ophthalmological visual field defects. Transl Vis Sci Technol. 2021;10(2):1. doi:10.1167/tvst.10.2.1
  • Black AA, Wood JM, Lovie-Kitchin JE. Inferior field loss increases rate of falls in older adults with glaucoma. Optometry Vision Sci. 2011;88(11):1275–1282. doi:10.1097/OPX.0b013e31822f4d6a
  • Friedman DS, Freeman E, Munoz B, Jampel HD, West SK. Glaucoma and mobility performance: the salisbury eye evaluation project. Ophthalmology. 2007;114(12):2232–2237.e2231. doi:10.1016/j.ophtha.2007.02.001
  • Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Risk of falls and motor vehicle collisions in glaucoma. Invest Ophthalmol Vis Sci. 2007;48(3):1149–1155. doi:10.1167/iovs.06-0886
  • Lamoreux EL, Chong E, Wang JJ, et al. Visual impairment, causes of vision loss, and falls: the Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2008;49(2):528–533. doi:10.1167/iovs.07-1036
  • Turano KA, Rubin GS, Quigley HA. Mobility Performance in Glaucoma. Invest Ophthalmol Vis Sci. 1999;40(12):2803–2809.
  • Shabana N, Cornilleau-Pérès V, Droulez J, Goh JC, Lee GS, Chew PT. Postural stability in primary open angle glaucoma. Clin Exp Ophthalmol. 2005;33(3):264–273. doi:10.1111/j.1442-9071.2005.01003.x
  • Black AA, Wood JM, Lovie-Kitchin JE, Newman BM. Visual impairment and postural sway among older adults with glaucoma. Optom Vis Sci. 2008;85(6):489–497. doi:10.1097/OPX.0b013e31817882db
  • Lajoie K, Miller AB, Strath RA, Neima DR, Marigold DS. Glaucoma-related differences in gaze behavior when negotiating obstacles. Transl Vis Sci Technol. 2018;7(4):10. doi:10.1167/tvst.7.4.10
  • Sippel K, Kasneci E, Aehling K, et al. Binocular glaucomatous visual field loss and its impact on visual exploration - a supermarket study. PLoS One. 2014;9(8):e106089. doi:10.1371/journal.pone.0106089
  • Geruschat DR, Hassan SE, Turano KA, Quigley HA, Congdon NG. Gaze behavior of the visually impaired during street crossing. Optometry Vision Sci. 2006;83(8):550–558. doi:10.1097/01.opx.0000232219.23362.a6
  • Dive S, Rouland JF, Lenoble Q, Szaffarczyk S, McKendrick AM, Boucart M. Impact of peripheral field loss on the execution of natural actions: a study with glaucomatous patients and normally sighted people. J Glaucoma. 2016;25(10):e889–e896. doi:10.1097/IJG.0000000000000402
  • Goh YW, Ang GS, Azuara‐Blanco A. Lifetime visual prognosis of patients with glaucoma. Clin Experiment Ophthalmol. 2011;39(8):766–770. doi:10.1111/j.1442-9071.2011.02559.x
  • Saunders LJ, Russell RA, Crabb DP. Practical landmarks for visual field disability in glaucoma. Br J Ophthalmol. 2012;96(9):1185. doi:10.1136/bjophthalmol-2012-301827
  • Andersson R, Nystrom M, Holmqvist K. Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. J Eye Mov Res. 2010;3(3):1–12. doi:10.16910/jemr.3.3.6
  • Holmqvist K, Andersson R. Eye Tracking: A Comprehensive Guide to Methods, Paradigms, and Measures. 2nd ed. Lund, Sweden: Lund Eye-Tracking Research Institute: Lund Eye-Tracking Research Institute (LETRI) AB; 2017.
  • Chris W, David CB Analysis of eye-tracking experiments performed on a Tobii T60. Paper presented at: Proc.SPIE; 2008.
  • Hooge ITC, Holleman GA, Haukes NC, Hessels RS. Gaze tracking accuracy in humans: one eye is sometimes better than two. Behav Res Methods. 2019;51(6):2712–2721. doi:10.3758/s13428-018-1135-3
  • Mazumdar D, Meethal NSK, George R, Pel JJM. Saccadic reaction time in mirror image sectors across horizontal Meridian in eye movement perimetry. Sci Rep. 2021;11(1):2630. doi:10.1038/s41598-021-81762-y
  • Sylvester R, Josephs O, Driver J, Rees G. Visual fMRI responses in human superior colliculus show a temporal–nasal asymmetry that is absent in lateral geniculate and visual cortex. J Neurophysiol. 2007;97(2):1495–1502. doi:10.1152/jn.00835.2006
  • Waitzman DM, Ma TP, Optican LM, Wurtz RH. Superior colliculus neurons mediate the dynamic characteristics of saccades. J Neurophysiol. 1991;66(5):1716–1737. doi:10.1152/jn.1991.66.5.1716
  • Smalianchuk I, Jagadisan UK, Gandhi NJ. Instantaneous midbrain control of saccade velocity. J Neurosci. 2018;38(47):10156. doi:10.1523/JNEUROSCI.0962-18.2018
  • Bergeron A, Guitton D. The superior colliculus and its control of fixation behavior via projections to brainstem omnipause neurons. Prog Brain Res. 2001;134:97–107.
  • Chen H, Zhao Y, Liu M, et al. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci. 2015;56(3):1971–1984. doi:10.1167/iovs.14-15691
  • Zhang S, Wang H, Lu Q, et al. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 2009;1303:131–143. doi:10.1016/j.brainres.2009.09.029
  • King WM, Sarup V, Sauvé Y, Moreland CM, Carpenter DO, Sharma SC. Expansion of visual receptive fields in experimental glaucoma. Vis Neurosci. 2006;23(1):137–142. doi:10.1017/S0952523806231122
  • Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proce National Acad Sci. 2010;107(11):5196–5201. doi:10.1073/pnas.0913141107
  • Martinez-Conde S, Macknik SL, Hubel DH. The role of fixational eye movements in visual perception. Nat Rev Neurosci. 2004;5(3):229–240. doi:10.1038/nrn1348
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097