258
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Detecting Abnormal Eye Movements in Patients with Neurodegenerative Diseases – Current Insights

, & ORCID Icon
Pages 3-16 | Received 18 Oct 2023, Accepted 23 Mar 2024, Published online: 09 Apr 2024

References

  • Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol. 2013;9(2):74–85. doi:10.1038/nrneurol.2012.273
  • Przybyszewski AW, Śledzianowski A, Chudzik A, Szlufik S, Koziorowski D. Machine learning and eye movements give insights into neurodegenerative disease mechanisms. Sensors. 2023;23(4):2145. doi:10.3390/s23042145
  • Birawo B, Kasprowski P. Review and evaluation of eye movement event detection algorithms. Sensors. 2022;22(22):8810. doi:10.3390/s22228810
  • Leigh RJ, Zee DS. The Neurology of Eye Movements. 4th ed. Oxford University Press; 2006.
  • Terao Y, Fukuda H, Hikosaka O. What do eye movements tell us about patients with neurological disorders? An introduction to saccade recording in the clinical setting. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(10):772–801. doi:10.2183/pjab.93.049
  • Calikusu FZ, Akkus S, Kochan Kizilkilic E, et al. Atypical findings: atypical parkinsonian syndromes or Atypical parkinsonian syndromes look-alikes. Clin Neurol Neurosurg. 2023;233:107975. doi:10.1016/j.clineuro.2023.107975
  • Irving EL, Steinbach MJ, Lillakas L, Babu RJ, Hutchings N. Horizontal saccade dynamics across the human life span. Invest Ophthalmol Vis Sci. 2006;47(6):2478–2484. doi:10.1167/iovs.05-1311
  • Mays LE. Neural control of vergence eye movements: convergence and divergence neurons in midbrain. J Neurophysiol. 1984;51(5):1091–1108. doi:10.1152/jn.1984.51.5.1091
  • Lavrich JB. Convergence insufficiency and its current treatment. Curr Opin Ophthalmol. 2010;21(5):356–360. doi:10.1097/ICU.0b013e32833cf03a
  • Abadi RV, Gowen E. Characteristics of saccadic intrusions. Vision Res. 2004;44(23):2675–2690. doi:10.1016/j.visres.2004.05.009
  • Lemos J, Eggenberger E. Saccadic intrusions: review and update. Curr Opin Neurol. 2013;26(1):59–66. doi:10.1097/WCO.0b013e32835c5e1d
  • Herishanu YO, Sharpe JA. Normal square wave jerks. Invest Ophthalmol Vis Sci. 1981;20(2):268–272.
  • Kassavetis P, Kaski D, Anderson T, Hallett M. Eye movement disorders in movement disorders. Mov Disord Clin Pract. 2022;9(3):284–295. doi:10.1002/mdc3.13413
  • Shemesh AA, Zee DS. Eye movement disorders and the cerebellum. J Clin Neurophysiol. 2019;36(6):405–414. doi:10.1097/WNP.0000000000000579
  • Zahidi AA, Woodhouse JM, Erichsen JT, Dunn MJ. Infantile nystagmus: an optometrist’s perspective. Clin Optom. 2017;9:123–131. doi:10.2147/OPTO.S126214
  • Schraa-Tam C. Functional MRI Studies into the Neuroanatomical Basis of the Eye Movements [ Ph.D. thesis]. Erasmus MC: University Medical Center Rotterdam; 2009.
  • Sharpe J, Wong AM. Anatomy and physiology of ocular motor systems. Walsh Hoyt’s Clin Neuro Ophthalmol. 2005;16:809–885.
  • Szmulewicz DJ, Waterston JA, MacDougall HG, et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a review of the clinical features and video-oculographic diagnosis. Ann N Y Acad Sci. 2011;1233(1):139–147. doi:10.1111/j.1749-6632.2011.06158.x
  • Wang L, Söderberg PG, Tengroth B. Influence of target direction, luminance and velocity on monocular horizontal optokinetic nystagmus. Acta Ophthalmol. 1993;71(5):578–585. doi:10.1111/j.1755-3768.1993.tb04645.x
  • Cheng M, Outerbridge JS. Optokinetic nystagmus during selective retinal stimulation. Exp Brain Res. 1975;23(2):129–139. doi:10.1007/BF00235455
  • Wade NJ, Tatler BW, Heller D. Dodge-ing the issue: dodge, Javal, Hering, and the measurement of saccades in eye-movement research. Perception. 2003;32(7):793–804. doi:10.1068/p3470
  • Leigh RJ, Zee DS. The Neurology of Eye Movements. Oxford University Press; 2015.
  • Friedrich MU, Schneider E, Buerklein M, et al. Smartphone video nystagmography using convolutional neural networks: conVNG. J Neurol. 2023;270(5):2518–2530. doi:10.1007/s00415-022-11493-1
  • Turuwhenua J, Yu TY, Mazharullah Z, Thompson B. A method for detecting optokinetic nystagmus based on the optic flow of the limbus. Vision Res. 2014;103:75–82. doi:10.1016/j.visres.2014.07.016
  • Pleshkov M, Zaitsev V, Starkov D, Demkin V, Kingma H, van de Berg R. Comparison of EOG and VOG obtained eye movements during horizontal head impulse testing. Front Neurol. 2022;13:917413. doi:10.3389/fneur.2022.917413
  • Creel DJ. The electrooculogram. Handb Clin Neurol. 2019;160:495–499.
  • Eggert T. Eye movement recordings: methods. Dev Ophthalmol. 2007;40:15–34.
  • Robinson DA. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng. 1963;10:137–145.
  • Newman JL, Phillips JS, Cox SJ. Reconstructing animated eye movements from electrooculography data to aid the diagnosis of vestibular disorders. Int J Audiol. 2022;61(1):78–83. doi:10.1080/14992027.2021.1883196
  • Currie J, Ramsden B, McArthur C, Maruff P. Validation of a clinical antisaccadic eye movement test in the assessment of dementia. Arch Neurol. 1991;48(6):644–648. doi:10.1001/archneur.1991.00530180102024
  • Crawford TJ, Higham S, Renvoize T, et al. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol Psychiatry. 2005;57(9):1052–1060. doi:10.1016/j.biopsych.2005.01.017
  • Heuer HW, Mirsky JB, Kong EL, et al. Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology. 2013;81(14):1235–1243. doi:10.1212/WNL.0b013e3182a6cbfe
  • Molitor RJ, Ko PC, Ally BA. Eye movements in Alzheimer’s disease. J Alzheimers Dis. 2015;44(1):1–12. doi:10.3233/JAD-141173
  • Fletcher WA, Sharpe JA. Saccadic eye movement dysfunction in Alzheimer’s disease. Ann Neurol. 1986;20(4):464–471. doi:10.1002/ana.410200405
  • Costanzo E, Lengyel I, Parravano M, et al. Ocular biomarkers for Alzheimer disease dementia: an umbrella review of systematic reviews and meta-analyses. JAMA Ophthalmol. 2023;141(1):84–91. doi:10.1001/jamaophthalmol.2022.4845
  • Mosimann UP, Felblinger J, Ballinari P, Hess CW, Müri RM. Visual exploration behaviour during clock reading in Alzheimer’s disease. Brain. 2004;127(Pt 2):431–438. doi:10.1093/brain/awh051
  • Parra MA, Della Sala S, Logie RH, Morcom AM. Neural correlates of shape-color binding in visual working memory. Neuropsychologia. 2014;52:27–36. doi:10.1016/j.neuropsychologia.2013.09.036
  • Holden JG, Cosnard A, Laurens B, et al. Prodromal Alzheimer’s disease demonstrates increased errors at a simple and automated anti-saccade task. J Alzheimers Dis. 2018;65(4):1209–1223. doi:10.3233/JAD-180082
  • Crutch SJ, Lehmann M, Schott JM, Rabinovici GD, Rossor MN, Fox NC. Posterior cortical atrophy. Lancet Neurol. 2012;11(2):170–178. doi:10.1016/S1474-4422(11)70289-7
  • Shakespeare TJ, Kaski D, Yong KX, et al. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain. 2015;138(Pt 7):1976–1991. doi:10.1093/brain/awv103
  • Jones A, Friedland RP, Koss B, Stark L, Thompkins-Ober BA. Saccadic intrusions in Alzheimer-type dementia. J Neurol. 1983;229(3):189–194. doi:10.1007/BF00313742
  • Schewe HJ, Uebelhack R, Vohs K. Abnormality in saccadic eye movement in dementia. Eur Psychiatry. 1999;14(1):52–53. doi:10.1016/S0924-9338(99)80716-0
  • Pin G, Trompette C, Ceccaldi M, Felician O, Koric L. Interest of eye movement study in early diagnosis of posterior cortical atrophy: a case-report. Rev Neurol. 2023;179(3):246–248. doi:10.1016/j.neurol.2022.10.007
  • Terao Y, Fukuda H, Tokushige SI, Inomata-Terada S, Hamada M, Ugawa Y. Saccades abnormalities in posterior cortical atrophy - A case report. Clin Neurophysiol. 2017;128(2):349–350. doi:10.1016/j.clinph.2016.12.005
  • Josephs KA. Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol. 2008;64(1):4–14. doi:10.1002/ana.21426
  • Boxer AL, Garbutt S, Rankin KP, et al. Medial versus lateral frontal lobe contributions to voluntary saccade control as revealed by the study of patients with frontal lobe degeneration. J Neurosci. 2006;26(23):6354–6363. doi:10.1523/JNEUROSCI.0549-06.2006
  • Garbutt S, Matlin A, Hellmuth J, et al. Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer’s disease. Brain. 2008;131(Pt 5):1268–1281. doi:10.1093/brain/awn047
  • Meyniel C, Rivaud-Péchoux S, Damier P, Gaymard B. Saccade impairments in patients with fronto-temporal dementia. J Neurol Neurosurg Psychiatry. 2005;76(11):1581–1584. doi:10.1136/jnnp.2004.060392
  • Burrell JR, Hornberger M, Carpenter RH, Kiernan MC, Hodges JR. Saccadic abnormalities in frontotemporal dementia. Neurology. 2012;78(23):1816–1823. doi:10.1212/WNL.0b013e318258f75c
  • Douglass A, Walterfang M, Velakoulis D, Abel L, Savage S. Behavioral variant frontotemporal dementia performance on a range of saccadic tasks. J Alzheimers Dis. 2018;65(1):231–242. doi:10.3233/JAD-170797
  • Russell LL, Greaves CV, Convery RS, et al. Eye movements in frontotemporal dementia: abnormalities of fixation, saccades and anti-saccades. Alzheimers Dement. 2021;7(1):e12218.
  • Peters F, Perani D, Herholz K, et al. Orbitofrontal dysfunction related to both apathy and disinhibition in frontotemporal dementia. Dement Geriatr Cognit Disord. 2006;21(5–6):373–379. doi:10.1159/000091898
  • Hornberger M, Geng J, Hodges JR. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain. 2011;134(Pt 9):2502–2512. doi:10.1093/brain/awr173
  • Primativo S, Clark C, Yong KXX, et al. Eyetracking metrics reveal impaired spatial anticipation in behavioural variant frontotemporal dementia. Neuropsychologia. 2017;106:328–340. doi:10.1016/j.neuropsychologia.2017.10.014
  • Terao Y, Fukuda H, Yugeta A, et al. Initiation and inhibitory control of saccades with the progression of Parkinson’s disease - changes in three major drives converging on the superior colliculus. Neuropsychologia. 2011;49(7):1794–1806. doi:10.1016/j.neuropsychologia.2011.03.002
  • Chambers JM, Prescott TJ. Response times for visually guided saccades in persons with Parkinson’s disease: a meta-analytic review. Neuropsychologia. 2010;48(4):887–899. doi:10.1016/j.neuropsychologia.2009.11.006
  • Zhou MX, Wang Q, Lin Y, et al. Oculomotor impairments in de novo Parkinson’s disease. Front Aging Neurosci. 2022;14:985679. doi:10.3389/fnagi.2022.985679
  • Antoniades CA, Demeyere N, Kennard C, Humphreys GW, Hu MT. Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord. 2015;30(6):843–847. doi:10.1002/mds.26134
  • Hanuška J, Rusz J, Bezdicek O, et al. Eye movements in idiopathic rapid eye movement sleep behaviour disorder: high antisaccade error rate reflects prefrontal cortex dysfunction. J Sleep Res. 2019;28(5):e12742. doi:10.1111/jsr.12742
  • Nagai K, Kaneko Y, Suzuki M, et al. Multimodal visual exploration disturbances in Parkinson’s disease detected with an infrared eye-movement assessment system. Neurosci Res. 2020;160:50–56. doi:10.1016/j.neures.2019.11.003
  • Ranchet M, Orlosky J, Morgan J, Qadir S, Akinwuntan AE, Devos H. Pupillary response to cognitive workload during saccadic tasks in Parkinson’s disease. Behav Brain Res. 2017;327:162–166. doi:10.1016/j.bbr.2017.03.043
  • Koohi N, Bancroft MJ, Patel J, et al. Saccadic Bradykinesia in Parkinson’s disease: preliminary observations. Mov Disord. 2021;36(7):1729–1731. doi:10.1002/mds.28609
  • Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord. 2003;18(7):738–750. doi:10.1002/mds.10473
  • Gallea C, Wicki B, Ewenczyk C, et al. Antisaccade, a predictive marker for freezing of gait in Parkinson’s disease and gait/gaze network connectivity. Brain. 2021;144(2):504–514. doi:10.1093/brain/awaa407
  • Zhang Y, Yan A, Liu B, et al. Oculomotor performances are associated with motor and non-motor symptoms in Parkinson’s disease. Front Neurol. 2018;9:960. doi:10.3389/fneur.2018.00960
  • Pinkhardt EH, Kassubek J, Süssmuth S, Ludolph AC, Becker W, Jürgens R. Comparison of smooth pursuit eye movement deficits in multiple system atrophy and Parkinson’s disease. J Neurol. 2009;256(9):1438–1446. doi:10.1007/s00415-009-5131-5
  • Wu CC, Cao B, Dali V, et al. Eye movement control during visual pursuit in Parkinson’s disease. PeerJ. 2018;6:e5442.
  • Corin MS, Elizan TS, Bender MB. Oculomotor function in patients with Parkinson’s disease. J Neurol Sci. 1972;15(3):251–265. doi:10.1016/0022-510X(72)90068-8
  • Kovacs GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol. 2015;41(1):3–23. doi:10.1111/nan.12208
  • Höglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–864. doi:10.1002/mds.26987
  • Quinn N. The ”round the houses” sign in progressive supranuclear palsy. Ann Neurol. 1996;40(6):951. doi:10.1002/ana.410400630
  • Fearon C, Field R, Donlon E, et al. The ”round the houses” sign and ”zig-zag” sign in progressive supranuclear palsy and other conditions. Parkinsonism Relat Disord. 2020;81:94–95. doi:10.1016/j.parkreldis.2020.10.030
  • Anagnostou E, Karavasilis E, Potiri I, et al. A cortical substrate for Square-Wave Jerks in progressive supranuclear palsy. J Clin Neurol. 2020;16(1):37–45. doi:10.3988/jcn.2020.16.1.37
  • Becker W, Behler A, Vintonyak O, Kassubek J. Patterns of small involuntary fixation saccades (SIFSs) in different neurodegenerative diseases: the role of noise. Exp Brain Res. 2023;241(7):1821–1833. doi:10.1007/s00221-023-06633-6
  • Troost BT, Daroff RB. The ocular motor defects in progressive supranuclear palsy. Ann Neurol. 1977;2(5):397–403. doi:10.1002/ana.410020509
  • Terao Y, Tokushige SI, Inomata-Terada S, Fukuda H, Yugeta A, Ugawa Y. Deciphering the saccade velocity profile of progressive supranuclear palsy: a sign of latent cerebellar/brainstem dysfunction? Clin Neurophysiol. 2022;141:147–159. doi:10.1016/j.clinph.2020.12.023
  • Lemos J, Pereira D, Almendra L, et al. Cortical control of vertical and horizontal saccades in progressive supranuclear palsy: an exploratory fMRI study. J Neurol Sci. 2017;373:157–166. doi:10.1016/j.jns.2016.12.049
  • Kim MK, Lee D, Yang X, Kim HJ, Choi JY, Kim JS. Saw-tooth vertical saccades in progressive supranuclear palsy. J Neurol. 2023;270(7):3644–3646. doi:10.1007/s00415-023-11696-0
  • Abate F, Picillo M, Della Rocca G, Barone P, Erro R. The ”zig-zag” sign in Progressive Supranuclear Palsy. Parkinsonism Relat Disord. 2020;79:86–87. doi:10.1016/j.parkreldis.2020.08.014
  • Shaikh AG, Factor SA, Juncos J. Saccades in progressive supranuclear palsy - maladapted, irregular, curved, and slow. Mov Disord Clin Pract. 2017;4(5):671–681. doi:10.1002/mdc3.12491
  • Wright IH, Sekar A, Jensen MT, et al. Reflexive and volitional saccadic eye movements and their changes in age and progressive supranuclear palsy. J Neurol Sci. 2022;443:120482. doi:10.1016/j.jns.2022.120482
  • Bruce CJ, Goldberg ME. Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol. 1985;53(3):603–635. doi:10.1152/jn.1985.53.3.603
  • Karatas M. Internuclear and supranuclear disorders of eye movements: clinical features and causes. Eur J Neurol. 2009;16(12):1265–1277. doi:10.1111/j.1468-1331.2009.02779.x
  • Ling X, Kim HJ, Lee JH, et al. Loss of torsional quick eye movements during head roll in progressive supranuclear palsy: a new diagnostic marker. J Neurol. 2023;270(4):2230–2236. doi:10.1007/s00415-023-11578-5
  • Armstrong RA. Visual signs and symptoms of multiple system atrophy. Clin Exp Optom. 2014;97(6):483–491. doi:10.1111/cxo.12206
  • Anderson T, Luxon L, Quinn N, Daniel S, David Marsden C, Bronstein A. Oculomotor function in multiple system atrophy: clinical and laboratory features in 30 patients. Mov Disord. 2008;23(7):977–984. doi:10.1002/mds.21999
  • Zhou H, Sun Y, Wei L, et al. Quantitative assessment of oculomotor function by videonystagmography in multiple system atrophy. Clin Neurophysiol. 2022;141:15–23. doi:10.1016/j.clinph.2022.05.019
  • Vintonyak O, Gorges M, Müller HP, et al. Patterns of eye movement impairment correlate with regional brain atrophy in neurodegenerative parkinsonism. Neurodegener Dis. 2017;17(4–5):117–126. doi:10.1159/000454880
  • Lanfranchi S, Jerman O, Vianello R. Working memory and cognitive skills in individuals with Down syndrome. Child Neuropsychol. 2009;15(4):397–416. doi:10.1080/09297040902740652
  • Lal V, Truong D. Eye movement abnormalities in movement disorders. Clin Park Relat Disord. 2019;1:54–63. doi:10.1016/j.prdoa.2019.08.004
  • Linder J, Wenngren BI, Stenlund H, Forsgren L. Impaired oculomotor function in a community-based patient population with newly diagnosed idiopathic parkinsonism. J Neurol. 2012;259(6):1206–1214. doi:10.1007/s00415-011-6338-9
  • Brooks SH, Klier EM, Red SD, et al. Slowed prosaccades and increased antisaccade errors as a potential behavioral biomarker of multiple system atrophy. Front Neurol. 2017;8:261. doi:10.3389/fneur.2017.00261
  • Vidailhet M, Rivaud S, Gouider-Khouja N, et al. Eye movements in parkinsonian syndromes. Ann Neurol. 1994;35(4):420–426. doi:10.1002/ana.410350408
  • Otero-Millan J, Serra A, Leigh RJ, Troncoso XG, Macknik SL, Martinez-Conde S. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J Neurosci. 2011;31(12):4379–4387. doi:10.1523/JNEUROSCI.2600-10.2011
  • Klotz L, Klockgether T. Multiple system atrophy with macro square-wave jerks. Mov Disord. 2005;20(2):253–254. doi:10.1002/mds.20298
  • Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–676. doi:10.1212/01.wnl.0000324625.00404.15
  • Rascol O, Sabatini U, Fabre N, et al. Abnormal vestibuloocular reflex cancellation in multiple system atrophy and progressive supranuclear palsy but not in Parkinson’s disease. Mov Disord. 1995;10(2):163–170. doi:10.1002/mds.870100206
  • Lee JY, Lee WW, Kim JS, Kim HJ, Kim JK, Jeon BS. Perverted head-shaking and positional downbeat nystagmus in patients with multiple system atrophy. Mov Disord. 2009;24(9):1290–1295.
  • VandeVrede L, Ljubenkov PA, Rojas JC, Welch AE, Boxer AL. Four-repeat tauopathies: current management and future treatments. Neurotherapeutics. 2020;17(4):1563–1581. doi:10.1007/s13311-020-00888-5
  • Belfor N, Amici S, Boxer AL, et al. Clinical and neuropsychological features of corticobasal degeneration. Mech Ageing Dev. 2006;127(2):203–207. doi:10.1016/j.mad.2005.09.013
  • Parmera JB, Rodriguez RD, Studart Neto A, Nitrini R, Brucki SMD. Corticobasal syndrome: a diagnostic conundrum. Dement Neuropsychol. 2016;10(4):267–275. doi:10.1590/s1980-5764-2016dn1004003
  • Rivaud-Péchoux S, Vidailhet M, Gallouedec G, Litvan I, Gaymard B, Pierrot-Deseilligny C. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology. 2000;54(5):1029–1032. doi:10.1212/WNL.54.5.1029
  • Mosimann UP, Müri RM, Burn DJ, Felblinger J, O’Brien JT, McKeith IG. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain. 2005;128(Pt 6):1267–1276. doi:10.1093/brain/awh484
  • Rivaud-Péchoux S, Vidailhet M, Brandel JP, Gaymard B. Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain. 2007;130(Pt 1):256–264. doi:10.1093/brain/awl315
  • Rinne JO, Lee MS, Thompson PD, Marsden CD. Corticobasal degeneration. A clinical study of 36 cases. Brain. 1994;117(Pt 5):1183–1196. doi:10.1093/brain/117.5.1183
  • Ling H, de Silva R, Massey LA, et al. Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol Appl Neurobiol. 2014;40(2):149–163. doi:10.1111/nan.12037
  • Outeiro TF, Koss DJ, Erskine D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14(1):5. doi:10.1186/s13024-019-0306-8
  • Fernández-Arcos A, Morenas-Rodríguez E, Santamaria J, et al. Clinical and video-polysomnographic analysis of rapid eye movement sleep behavior disorder and other sleep disturbances in dementia with Lewy bodies. Sleep. 2019;42(7). doi:10.1093/sleep/zsz086
  • McKeith I, Mintzer J, Aarsland D, et al. Dementia with Lewy bodies. Lancet Neurol. 2004;3(1):19–28. doi:10.1016/S1474-4422(03)00619-7
  • Kapoula Z, Yang Q, Vernet M, Dieudonné B, Greffard S, Verny M. Spread deficits in initiation, speed and accuracy of horizontal and vertical automatic saccades in dementia with Lewy bodies. Front Neurol. 2010;1:138. doi:10.3389/fneur.2010.00138
  • Brett FM, Henson C, Staunton H. Familial diffuse Lewy body disease, eye movement abnormalities, and distribution of pathology. Arch Neurol. 2002;59(3):464–467. doi:10.1001/archneur.59.3.464
  • Nakashima H, Terada S, Ishizu H, et al. An autopsied case of dementia with Lewy bodies with supranuclear gaze palsy. Neurol Res. 2003;25(5):533–537. doi:10.1179/016164103101201788
  • de Bruin VM, Lees AJ, Daniel SE. Diffuse Lewy body disease presenting with supranuclear gaze palsy, parkinsonism, and dementia: a case report. Mov Disord. 1992;7(4):355–358. doi:10.1002/mds.870070410
  • Armstrong RA. A comparison of visual problems in the parkinsonian syndromes. Intern Med Rev. 2018;4(3):32.
  • de Villers-Sidani É, Voss P, Guitton D, Cisneros-Franco JM, Koch NA, Ducharme S. A novel tablet-based software for the acquisition and analysis of gaze and eye movement parameters: a preliminary validation study in Parkinson’s disease. Front Neurol. 2023;14:1204733. doi:10.3389/fneur.2023.1204733
  • Bredemeyer O, Patel S, FitzGerald JJ, Antoniades CA. Oculomotor deficits in Parkinson’s disease: increasing sensitivity using multivariate approaches. Front Digit Health. 2022;4:939677. doi:10.3389/fdgth.2022.939677
  • Meissner WG. When does Parkinson’s disease begin? From prodromal disease to motor signs. Rev Neurol. 2012;168(11):809–814. doi:10.1016/j.neurol.2012.07.004
  • Raskin J, Cummings J, Hardy J, Schuh K, Dean RA. Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr Alzheimer Res. 2015;12(8):712–722. doi:10.2174/1567205012666150701103107