79
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Modeling of particle size distribution of limestone in sulfur capture in air and oxy-fuel circulating fluidized bed combustion

, , &
Pages 41-52 | Published online: 10 Aug 2016

References

  • Kunii D, Levenspiel O. Fluidization Engineering. New York: John Wiley & Sons; 1968.
  • Miccio M, Salatino P. Computations of the performance of fluidized coal combustors. Powder Technol. 1985;43:163–167.
  • Donsi G, El-Sawi M, Formisani B, Osseo LS. On the simulation of fluidized bed coal combustors. Combust Flame. 1986;64:33–41.
  • Chirone R, Salatino P, Massimilla L. Secondary fragmentation of char particles during combustion in a fluidized bed. Combust Flame. 1989;77;79–90.
  • Chirone R, Massimilla L, Salatino P. Comminution of carbon in fluidized bed combustion. Prog Energy Combust Sci. 1991;17:297–326.
  • Essenhigh RH, Basak AK, Shaw DW, Gangaram G. Evaluation of reactivity functions for coal combustion from particle size analysis in backmix reactors. Combust Flame. 1990;79:307–318.
  • Rong D, Jin B, Zhang M. A coal combustion model in pressurized fluidized beds. Fluidized Bed Combustion ASME. 1991;3:1177–1181.
  • Adánez J, de Diego LF, Gayán P, Armesto L, Cabanillas A. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors. Fuel. 1995;74:1049–1056.
  • Jensen A, Johnsson JE, Andries J, et al. Formation and reduction of NOx on pressurized fluidized bed combustion of coal. Fuel. 1995;74:1555–1569.
  • Marban G, Pis JJ, Fuertes AB. Simulation of secondary fragmentation during fluidized bed combustion of char particles. Powder Technol. 1996;89:71–78.
  • Selçuk N, Değirmenci E, Oymak O. Evaluation of an improved code for the performance of AFBCs. J Inst Energy. 1997;70:31–50.
  • Chirone R, Marzocchella A, Salatino P, Scala F. Fluidized bed combustion of high-volatile solid fuels: and assessment of char attrition and volatile segregation. Fluidized Bed Combust ASME. 1999;1:185–201.
  • Adanez J, Gayán P, Grasa G, de Diego LF, Armesto L, Cabanillas A. Circulating fluidized bed combustion in the turbulent regime: modelling of carbon combustion efficiency and sulphur retention. Fuel. 2001;80:1405–1414.
  • Saastamoinen JJ, Tourunen A, Hämäläinen J, Hyppänen T, Loschkin M, Kettunen A. Analytical solutions for steady and unsteady state particle size distributions in FBC and CFBC boilers for non-breaking char particles. Combust Flame. 2003;132:395–405.
  • Altindag H, Gogebakan Y, Selçuk N. Sulfur capture for fluidized-bed combustion of high-sulfur content lignites. Appl Energy. 2004;79:403–424.
  • Blaszczuk A, Leszczynski J, Nowak W. Simulation model of the mass balance in a supercritical circulating fluidized bed combustor. Powder Technol. 2013;246:317–326.
  • Ray YC, Jiang TS, Jiang TJ. Particle population model for a fluidized bed with attrition. Powder Technol. 1987;52:35–48.
  • Milioli FE, Foster PJ. A model for particle size distribution and elutriation in fluidized bed. Powder Technol. 1995;83:265–280.
  • Adánez J, de Diego LF, Gayán P, Armesto L, Cabanillas A. Modelling of sulfur retention in circulating fluidized bed combustors. Fuel. 1996;75:262–270.
  • Saastamoinen JJ, Shimizu T. Study of attrition of limestone in a fluidized bed by population balance modelling. In: Proceedings of the 10th SCEJ Symposium on Fluidization; Tokyo; 2004:317–324.
  • Saastamoinen J, Shimizu T. A model of limestone attrition and SO2 capture in a large-scale pressurised fluidized bed combustor. Chem Eng Sci. 2007;62:574–583.
  • Saastamoinen JJ, Shimizu T. Attrition-enhanced sulfur capture by limestone particles in fluidized beds. Ind Eng Chem Res. 2007;46:1079–1090.
  • Saastamoinen J, Pikkarainen T, Tourunen A, Räsänen M, Jäntti T. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds. Powder Technol. 2008;187:244–251.
  • Saastamoinen JJ, Shimizu T, Tourunen A. Effect of attrition on particle size distribution and SO2 capture in fluidized bed combustion under high CO2 partial pressure conditions. Chem Eng Sci. 2010;65:550–555.
  • Montagnaro F, Salatino P, Scala F, Urciuolo M. A population balance model on sorbent in CFB combustors: the influence of particle attrition. Ind Eng Chem Res. 2011;50:9704–9710.
  • Overturf BW, Kayihan F. Computations for discrete cut particle size distributions in a fluidized bed reactor. Powder Technol. 1979;23:143–147.
  • Chandran RR, Sutherland DD. Performance simulation of fluidized-bed coal combustors. ACS. 1988;33(2):145–156.
  • de Souza-Santos ML. Comprehensive modelling and simulation of fluidized bed boilers and gasifiers. Fuel. 1989;68:1507–1521.
  • Gierse M. Kornhaushalt in zirkulierenden Wirbelschicheten. BWK. 1991;43(10):459–462.
  • Selçuk N, Oymak O, Değirmenci E. Basic requirement for modelling fluidized beds: fast computation of particle size distributions (PSDs). Powder Technol. 1996;87:269–271.
  • Wang Q, Luo Z, Li X, Fang M, Ni M, Cen K. A mathematical model for a circulating fluidized bed (CFB) boiler. Energy. 1999;24:633–653.
  • Wang Q, Luo Z, Ni M, Cen K. Particle population balance model for a circulating fluidized bed boiler. Chem Eng J. 2003;93:121–133.
  • Hairui Y, Wirsum M, Junfu L, Xianbin X, Guangxi Y. Semi-empirical technique for predicting ash size distribution in CFB boilers. Fuel Process Technol. 2004;85:1403–1414.
  • Saastamoinen J, Tourunen A, Häsä H, et al. Dynamic reactivity and comminution behaviour of particles in CFBC. Far East J Appl Math. 2006;23:41–71.
  • Klett C, Hartge EU, Werther J. Time-dependent behaviour of the ash particle size distribution in a circulating fluidized bed system. Proc Combust Inst. 2005;30:2947–2954.
  • Hartge EU, Klett C, Werther J. Dynamic simulation of the particle size distribution in a circulating fluidized bed combustor. Chem Eng Sci. 2007;62:281–293.
  • Wu Y, Wang C, Tan Y, Jia L, Anthony EJ. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion. Appl Energy. 2011;88:2940–2948.
  • Bade S, Hoffman U. Modelling the simultaneous comminution and chemical reaction in a non-catalytic gas-solid batch reactor. Chem Eng Sci. 1997;52:2715–2728.
  • Hatzantonis H, Goulas A, Kiparissides C. A comprehensive model for the prediction of particle-size distribution in catalysed olefin polymerization fluidized-bed reactors. Chem Eng Sci. 1998;53:3251–3267.
  • Chejne F, Hernandez JP. Modelling and simulation of coal gasification process in fluidized bed. Fuel. 2002;81:1687–1702.
  • Chejne F, Lopera E, Londoño CA. Modelling and simulation of a coal gasification process in pressurized fluidized bed. Fuel. 2011;90:399–411.
  • Natale G, Galgano A, Di Blasi C. Modeling particle population balances in fluidized-bed wood gasifiers. Biomass Bioenergy. 2014;62: 123–137.
  • Marbán G, Fuertes AB, Pis JJ. Calculation of burnoff distributions of char particles in a bubbling fluidized bed reactor by means of batch combustion experiments. Trans IChemE. 1998;76:864–872.
  • van der Post AJ, Bosgra OH, Boelens G. Modelling the dynamics of fluidization and combustion in a coal-fired FBC. J Powder Bulk Solids Technol. 1981;5:32–37.
  • Junk KW, Brown RC. A model of coal combustion dynamics in a fluidized bed combustor. Combust Flame. 1993;95:219–228.
  • Gbor, PK, Jia CQ. Critical evaluation of coupling particle size distribution with the shrinking core model. Chem Eng Sci. 2004;59:1979–1987.
  • Stecconi P. Solid particles distribution in a fluidized bed with unreacted core reaction and superficial abrasion. Powder Technol. 1982;32:35–43.
  • Lalak I, Seeber J, Kluger F, Krupka S. Operational experience with high efficiency cyclones: comparison between boiler A and B in the Zeran power plant, Warsaw/Poland. VGB PowerTech. 2003;9:90–94.
  • Lee YY, Hyppänen T. A coal combustion model for circulating fluidized bed boilers. Fluidized Bed Combustion ASME. 1989;2:753–764.
  • Hyppänen T, Lee YY, Rainio A. A three-dimensional model for circulating fluidized bed boilers. Fluidized Bed Combustion. ASME. 1991;1:439–448.
  • Rozelle PL, Pisupati SV, Scaroni AW. Measurement of flyash and bottom ash flow rates from a circulating fluidized bed boiler. Environ Prog. 2004;19:175–182.
  • Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD. Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci. 2010;36:581–625.
  • Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power technology. Prog Energy Combust Sci. 2005;31:283–307.
  • Myöhänen K, Hyppänen T, Pikkarainen T, Eriksson T, Hotta A. Near zero CO2 emissions in coal firing with oxy-fuel circulating fluidized bed boiler. Chem Eng Tech. 2009;32:355–363.
  • Saastamoinen J, Tourunen A, Pikkarainen T, et al. Fluidized bed combustion in high concentrations of O2 and CO2. In: Proceedings of the 19th International Conference on Fluid Bed Combust; Vienna; 2006. Paper No. 49.
  • Scala F, Chirone R. Combustion of single coal char particle under fluidized bed oxyfiring conditions. Ind Eng Chem Res. 2010;49:11029–11036.
  • Krzywański J, Czakiert T, Muskała W, Nowak W. Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed. Fuel Process Technol. 2011;92:590–596.
  • Jia L, Tan Y, Anthony EJ. Emissions of SO2 and NOx during oxy-fuel CFB combustion tests in a mini-circulating fluidized bed combustion reactor. Energ Fuel. 2010;24:910–915.
  • Giarcía-Labiano F, Rufas A, de Diego LF, et al. Calcium-based sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions. Fuel. 2011;90:3100–3108.
  • Takkinen S, Hyppänen T, Saastamoinen J, Pikkarainen T. Experimental and modeling study of sulfur capture by limestone in selected conditions of air-fired and oxy-fuel CFB boilers. Energ Fuel. 2011;25:2968–2979.
  • Rahiala S, Hyppänen T, Pikkarainen T. Bench-scale and modeling study of sulfur capture by limestone in typical CO2 concentrations and temperatures of fluidized-bed air and oxy-fuel combustion. Energ Fuel. 2013;27:7664–7672.
  • Snow MJH, Lonwell JP, Sarofim AF. Direct sulfation of calcium carbonate. Ind Eng Chem Res. 1988;27:268–273.
  • Hajaligol MR, Longwell JP, Sarofim AF. Analysis and modelling of the direct sulfation of calcium carbonate. Ind Eng Chem Res. 1988;27:2203–2210.
  • Scala F, Salatino P. Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions: the influence of limestone attrition and fragmentation. Chem Eng Sci. 2010;65:556–561.
  • Scala F, Salatino P. Limestone fragmentation and attrition during fluidized bed oxyfiring. Fuel. 2010;89:827–832.
  • Yao X, Zhang H, Yang H, Liu Q, Wang J, Yue G. An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. Fuel Process Technol. 2010;91:1119–1124.
  • Lupiáñez C, Scala F, Salatino P, Romeo LM, Díez LI. Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed. Fuel Process Technol. 2011;92:1449–1456.
  • Tourunen A. A Study of Combustion Phenomena in Circulating Fluidized Beds by Developing and Applying Experimental and Modelling Methods for Laboratory-Scale Reactors. PhD Thesis. Lappeenranta: Acta Universitatis Lappeenrantaensis. 2010;419;1–81.
  • Kato K, Kanbara S, Tajima T, Shibasaki H, Ozawa K, Takarada T. Effect of particle size on elutriation rate constant for a fluidized bed. J Chem Eng Japan. 1987;20:498–504.
  • Wen CY, Hashinger RF. Elutriation of solid particles from a dense fluidized bed. AIChE J. 1960;6:220–226.
  • Harris AT, Davidson JF, Thorpe RB. Particle residence time distributions in circulating fluidised beds. Chem Eng Sci. 2003;58:2181–2202.
  • Saastamoinen JJ. Particle size optimization for SO2 capture by limestone in a circulating fluidized bed. Ind Eng Chem Res. 2007;46:7308–7316.
  • Ray YC, Jiang TS, Wen CY. Particle attrition phenomena in a fluidized bed. Powder Technol. 1987;49:193–206.