524
Views
31
CrossRef citations to date
0
Altmetric
Review

Liddle’s syndrome mechanisms, diagnosis and management

ORCID Icon, & ORCID Icon
Pages 13-22 | Published online: 03 Sep 2019

References

  • Palmer BF, Alpern RJ. Liddle’s syndrome [Internet]. Am J Med. 1998;301–309. doi:10.1016/s0002-9343(98)00018-79552093
  • Cui Y, Tong A, Jiang J, Wang F, Li C. Liddle syndrome: clinical and genetic profiles [Internet]. J Clin Hypertens. 2017;524–529. doi:10.1111/jch.12949
  • Tetti M, Monticone S, Burrello J, et al. Liddle Syndrome: review of the literature and description of a new case. Int J Mol Sci. 2018;19. doi:10.3390/ijms19030812.
  • Liddle GW. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians. 1963;76:199–213.
  • Botero-Velez M, Curtis JJ, Warnock DG. Liddle’s syndrome revisited – a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;330:178–181.8264740
  • Rodriguez JA, Biglieri EG, Schambelan M. Pseudohyperaldosteronism with renal tubular resistance to mineralocorticoid hormones. Trans Assoc Am Physicians. 1981;94:172–182.7046191
  • Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR. The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab. 1981;52:1027–1032. doi:10.1210/jcem-52-5-10276262354
  • Nakada T, Koike H, Akiya T, et al. Liddle’s syndrome, an uncommon form of hyporeninemic hypoaldosteronism: functional and histopathological studies. J Urol. 1987;137:636–640. doi:10.1016/S0022-5347(17)44161-93550146
  • Büyükkaragöz B, Yilmaz AC, Karcaaltincaba D, Ozdemir O, Ludwig M. Liddle syndrome in a Turkish family with heterogeneous phenotypes. Pediatr Int. 2016;58:801–804. doi:10.1111/ped.1279027325428
  • Pagani L, Diekmann Y, Sazzini M, et al. Three reportedly unrelated families with Liddle Syndrome inherited from a common ancestor. Hypertension. 2018;71:273–279. doi:10.1161/HYPERTENSIONAHA.117.1049129229744
  • Findling JW, Raff H, Hansson JH, Lifton RP. Liddle’s syndrome: prospective genetic screening and suppressed aldosterone secretion in an extended kindred. J Clin Endocrinol Metab. 1997;82:1071–1074.9100575
  • Pepersack T, Allegre S, Jeunemaître X, Leeman M, Praet J-P. Liddle syndrome phenotype in an octogenarian. J Clin Hypertens. 2015;17:59–60. doi:10.1111/jch.2015.17.issue-1
  • Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82. doi:10.1038/ng0995-767550319
  • Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, Rossier BC. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest. 1996;97:1780–1784. doi:10.1172/JCI1186068601645
  • Kota SK, Kota SK, Panda S, Modi KD. A case of Liddle’s syndrome; unusual presentation with hypertensive encephalopathy. Saudi J Kidney Dis Transpl. 2014;25:869–871. doi:10.4103/1319-2442.13518524969204
  • Gong L, Chen J, Shao L, Song W, Hui R, Wang Y. Phenotype–genotype analysis in two Chinese families with Liddle syndrome. Mol Biol Rep. 2014;41:1569–1575. doi:10.1007/s11033-013-3003-724474657
  • Rossi E, Farnetti E, Nicoli D, et al. A clinical phenotype mimicking essential hypertension in a newly discovered family with Liddle’s syndrome. Am J Hypertens. 2011;24:930–935. doi:10.1038/ajh.2011.7621525970
  • Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140. doi:10.1542/peds.2017-1904.
  • Ingelfinger JR. The child or adolescent with elevated blood pressure. N Engl J Med. 2014;1075.
  • Viera AJ, Neutze DM. Diagnosis of secondary hypertension: an age-based approach. Am Fam Physician. 2010;82:1471–1478.21166367
  • Mumford E, Unwin RJ, Walsh SB, Liquorice L. Bartter or Gitelman—how to differentiate? Nephrol Dial Transplant. 2019;34:38–39. doi:10.1093/ndt/gfy19929982819
  • Vehaskari VM. Heritable forms of hypertension. Pediatr Nephrol. 2009;24:1929–1937. doi:10.1007/s00467-007-0537-817647025
  • Geller DS, Farhi A, Pinkerton N. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;119–123. doi:10.1126/science.289.5476.119.
  • Al-Harbi T, Al-Shaikh A. Apparent mineralocorticoid excess syndrome: report of one family with three affected children. J Pediatr Endocrinol Metab. 2012;25:1083–1088. doi:10.1515/jpem-2012-011323329753
  • Hurley DM, Accili D, Stratakis CA, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991;87:680–686. doi:10.1172/JCI1150461704018
  • Caretto A, Primerano L, Novara F, Zuffardi O, Genovese S, Rondinelli M. A therapeutic challenge: Liddle’s syndrome managed with amiloride during pregnancy. Case Rep Obstet Gynecol. 2014;2014:156250.25210634
  • Terjung R, editor, Pathophysiology, Diagnosis, and Treatment of Mineralocorticoid Disorders. Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011:1083–1119.
  • Funder JW, Carey RM, Mantero F, et al. the management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–1916. doi:10.1210/jc.2015-406126934393
  • Hansson JH, Schild L, Lu Y, et al. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity [Internet]. Proc Natl Acad Sci. 1995;11495–11499. doi:10.1073/pnas.92.25.11495.8524790
  • Yang K-Q, Lu C-X, Fan P, et al. Genetic screening of SCNN1B and SCNN1G genes in early-onset hypertensive patients helps to identify Liddle syndrome. Clin Exp Hypertens. 2018;40:107–111. doi:10.1080/10641963.2017.133479928718682
  • Bogdanović R, Kuburović V, Stajić N, et al. Liddle syndrome in a Serbian family and literature review of underlying mutations. Eur J Pediatr. 2012;171:471–478. doi:10.1007/s00431-011-1581-821956615
  • Gao PJ, Zhang KX, Zhu DL, et al. Diagnosis of Liddle syndrome by genetic analysis of β and γ subunits of epithelial sodium channel–a report of five affected family members. J Hypertens. 2001;19:885–889. doi:10.1097/00004872-200103000-0001711393671
  • Fan P, Lu C-X, Zhang D, et al. Liddle syndrome misdiagnosed as primary aldosteronism resulting from a novel frameshift mutation of SCNN1B. Endocr Connect. 2018. doi:10.1530/EC-18-0484
  • Tapolyai M, Uysal A, Dossabhoy NR, et al. High prevalence of liddle syndrome phenotype among hypertensive US Veterans in Northwest Louisiana. J Clin Hypertens. 2010;12:856–860. doi:10.1111/j.1751-7176.2010.00359.x
  • Liu K, Qin F, Sun X, et al. Analysis of the genes involved in Mendelian forms of low-renin hypertension in Chinese early-onset hypertensive patients. J Hypertens. 2018;36:502–509. doi:10.1097/HJH.000000000000155628915228
  • Sugiyama T, Kato N, Ishinaga Y, Yamori Y, Yazaki Y. Evaluation of selected polymorphisms of the Mendelian hypertensive disease genes in the Japanese population. Hypertens Res. 2001;24:515–521. doi:10.1291/hypres.24.51511675945
  • Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–414. doi:10.1016/0092-8674(94)90250-X7954808
  • Gardner JD, Lapey A, Simopoulos P, Bravo EL. Abnormal membrane sodium transport in Liddle’s syndrome. J Clin Invest. 1971;50:2253–2258. doi:10.1172/JCI1067224328882
  • Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC. A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci U S A. 1995;92:5699–5703. doi:10.1073/pnas.92.12.56997777572
  • Firsov D, Schild L, Gautschi I, Mérillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A. 1996;93:15370–15375. doi:10.1073/pnas.93.26.153708986818
  • Fukutake N, Kawashima S, Matsumoto T, Ryo K, Mitani Y, Iwasaki T. [A case of Liddle’s syndrome with familial occurrence]. Nihon Naika Gakkai Zasshi. 1988;77:441–442. doi:10.2169/naika.77.4413042898
  • Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. Embo J. 1996;15:2381–2387. doi:10.1002/j.1460-2075.1996.tb00594.x8665845
  • Staub O, Dho S, Henry P, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. Embo J. 1996;15:2371–2380. doi:10.1002/j.1460-2075.1996.tb00593.x8665844
  • Goulet CC, Volk KA, Adams CM, Prince LS, Stokes JB, Snyder PM. Inhibition of the Epithelial Na + Channel by Interaction of Nedd4 with a PY Motif Deleted in Liddle’s syndrome. J Biol Chem. 1998;273:30012–30017. doi:10.1074/jbc.273.45.300129792722
  • Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. Faseb J. 2001;15:204–214. doi:10.1096/fj.00-0191com11149908
  • Kamynina E, Tauxe C, Staub O. Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na(+) channel regulation. Am J Physiol Renal Physiol. 2001;281:F469–77. doi:10.1152/ajprenal.2001.281.3.F46911502596
  • Staub O, Gautschi I, Ishikawa T, et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. Embo J. 1997;16:6325–6336. doi:10.1093/emboj/16.3.6599351815
  • Chen SY, Bhargava A, Mastroberardino L, et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A. 1999;96:2514–2519. doi:10.1073/pnas.96.5.251410051674
  • Náray-Fejes-Tóth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Tóth G. Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem. 1999;274:16973–16978. doi:10.1074/jbc.274.24.1697310358046
  • Alvarez de la Rosa D, Zhang P, Náray-Fejes-Tóth A, Fejes-Tóth G, Canessa CM. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem. 1999;274:37834–37839. doi:10.1074/jbc.274.53.3783410608847
  • Debonneville C. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na channel cell surface expression [Internet]. Embo J. 2001;7052–7059. doi:10.1093/emboj/20.24.705211742982
  • Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol. 2009;297:F849–63. doi:10.1152/ajprenal.00181.200919458126
  • Kellenberger S, Gautschi I, Rossier BC, Schild L. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest. 1998;101:2741–2750. doi:10.1172/JCI23259637708
  • Knight KK, Olson DR, Zhou R, Snyder PM. Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci U S A. 2006;103:2805–2808. doi:10.1073/pnas.051118410316477034
  • Snyder PM. Liddle’s syndrome mutations disrupt cAMP-mediated translocation of the epithelial Na+ channel to the cell surface. J Clin Invest. 2000;105:45–53. doi:10.1172/JCI786910619860
  • Anantharam A, Tian Y, Palmer LG. Open probability of the epithelial sodium channel is regulated by intracellular sodium. J Physiol. 2006;574:333–347. doi:10.1113/jphysiol.2006.10992616690707
  • Salih M, Gautschi I, van Bemmelen MX, et al. A missense mutation in the extracellular domain of αENaC causes Liddle Syndrome. J Am Soc Nephrol. 2017;28:3291–3299. doi:10.1681/ASN.201608088628710092
  • Barbaro NR, Foss JD, Kryshtal DO, et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21:1009–1020. doi:10.1016/j.celrep.2017.10.00229069584
  • Van Beusecum JP, Barbaro NR, McDowell Z, et al. High salt activates CD11c+ antigen-presenting cells via SGK (Serum Glucocorticoid Kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension. 2019;74:555–563. doi:10.1161/HYPERTENSIONAHA.119.1263431280647