502
Views
45
CrossRef citations to date
0
Altmetric
Review

Recent advances in Staphylococcus aureus infection: focus on vaccine development

ORCID Icon, , , &
Pages 1243-1255 | Published online: 13 May 2019

References

  • Mermel LA, Cartony JM, Covington P, Maxey G, Morse D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: a prospective, quantitative analysis. J Clin Microbiol. 2011;49(3):1119–1121. doi:10.1128/JCM.02601-1021209169
  • Kaspar U, Kriegeskorte A, Schubert T, et al. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol. 2016;18(7):2130–2142. doi:10.1111/1462-2920.1289125923378
  • Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med. 2009;206:2417–2427. doi:10.1084/jem.2009009719808256
  • Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Investig. 2003;111:1265–1273. doi:10.1172/JCI1853512727914
  • Antri K, Akkou M, Bouchiat C, et al. High levels of Staphylococcus aureus and MRSA carriage in healthy population of algiers revealed by additional enrichment and multisite screening. Eur J Clin Microbiol Infect Dis. 2018;37(8):1521–1529. doi:10.1007/s10096-018-3279-629948361
  • Kazimoto T, Abdulla S, Bategereza L, et al. Causative agents and antimicrobial resistance patterns of human skin and soft tissue infections in Bagamoyo, Tanzania. Acta Trop. 2018;186:102–106. doi:10.1016/j.actatropica.2018.07.00730006029
  • Deguchi H, Kitazawa K, Kayukawa K, et al. The trend of resistance to antibiotics for ocular infection of Staphylococcus aureus, coagulase-negative staphylococci, and corynebacterium compared with 10-years previous: a retrospective observational study. PLoS One. 2018;13(9):e0203705. doi:10.1371/journal.pone.020370530192856
  • Belyhun Y, Moges F, Endris M, et al. Ocular bacterial infections and antibiotic resistance patterns in patients attending Gondar teaching hospital, Northwest Ethiopia. BMC Res Notes. 2018;11:597. doi:10.1186/s13104-018-3705-y30119696
  • Keihanian F, Saeidinia A, Abbasi K, Keihanian F. Epidemiology of antibiotic resistance of blood culture in educational hospitals in Rasht, North of Iran. Infect Drug Resist. 2018;11:1723–1728. doi:10.2147/IDR.S16917630349329
  • Yadav NS, Sharma S, Chaudhary DK, et al. Bacteriological profile of neonatal sepsis and antibiotic susceptibility pattern of isolates admitted at Kanti children’s hospital, Kathmandu, Nepal. BMC Res Notes. 2018;11:301. doi:10.1186/s13104-018-3394-629764503
  • Dat VQ, Vu HN, Nguyen The H, et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis. 2017;17(1):493. doi:10.1186/s12879-017-2757-228701159
  • Huttunen R, Attman E, Aittoniemi J, et al. Nosocomial bloodstream infections in a finnish tertiary care hospital: a retrospective cohort study of 2175 episodes during the years 1999–2001 and 2005–2010. Infect Dis. 2015;47(1):20–26. doi:10.3109/00365548.2014.956791
  • Buetti N, Lo Priore E, Atkinson A, et al. Low incidence of subsequent bacteraemia or fungaemia after removal of a colonized intravascular catheter tip. Clin Microbiol Infect. 2018;24:548e1–548e3. doi:10.1016/j.cmi.2017.09.009
  • Pant S, Patel NJ, Deshmukh A, et al. Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J Am Coll Cardiol. 2015;65(19):2070–2076. doi:10.1016/j.jacc.2015.03.51825975469
  • Walaszek M, Różańska A, Walaszek MZ, Wójkowska-Mach J. The Polish society of hospital infections team. Epidemiology of ventilator-associated pneumonia, microbiological diagnostics and the length of antimicrobial treatment in the polish intensive care units in the years 2013–2015. BMC Infect Dis. 2018;18:308. doi:10.1186/s12879-018-3109-629976151
  • Huang Y, Jiao Y, Zhang J, et al. Microbial etiology and prognostic factors of ventilator-associated pneumonia: a multicenter retrospective study in Shanghai. Clin Infect Dis. 2018;67(S2):S146–S152. doi:10.1093/cid/ciy68630423049
  • Bonell A, Azarrafiy R, Huong VTL, et al. A systematic review and meta-analysis of ventilator-associated pneumonia in adults in Asia: an analysis of national income level on incidence and etiology. Clin Infect Dis. 2018;68(3):511–518. doi:10.1093/cid/ciy543
  • Rosenthal VD, Maki DG, Mehta A, et al. International nosocomial infection control consortium members. International report, data summary for 2002–2007. Am J Infect Control. 2008;36:627–637. doi:10.1016/j.ajic.2008.03.00318834725
  • Rosenthal VD, Al-Abdely HM, El-Kholy AA, et al. International nosocomial infection control consortium report, data summary of 50 countries for 2010–2015: device-associated module. Am J Infect Control. 2016;44:1495–1504. doi:10.1016/j.ajic.2016.08.00727742143
  • Jan W, Sebastian H, Chantal Q, et al. Healthcare-associated pneumonia in acute care hospitals in European Union/European Economic area countries: an analysis of data from a point prevalence survey, 2011 to 2012. Euro Surveill. 2018;23(32):1700843.
  • El-Sokkary RH, Ramadan RA, El-Shabrawy M, et al. Community acquired pneumonia among adult patients at an Egyptian university hospital: bacterial etiology, susceptibility profile and evaluation of the response to initial empiric antibiotic therapy. Infect Drug Resist. 2018;11:2141–2150. doi:10.2147/IDR.S18277730464557
  • Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediat Pulmonol. 2018;53:S64–S74. doi:10.1002/ppul.24139
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–318. doi:10.1179/2047773215Y.000000003026343252
  • Mannaa D, Mandal AK, Sen IK, et al. Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. Int J Biol Macromol. 2015;80:455–459. doi:10.1016/j.ijbiomac.2015.07.02826188293
  • Alabi AS, Frielinghaus L, Kaba H, et al. Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, central Africa. BMC Infect Dis. 2013;13:455. doi:10.1186/1471-2334-13-45524083375
  • Nurjadi D, Friedrich-Jänicke B, Schäfer J, et al. Skin and soft tissue infections in intercontinental travellers and the import of multi-resistant Staphylococcus aureus to Europe. Clin Microbiol Infect. 2015;21:567e1–10. doi:10.1016/j.cmi.2015.01.01625753191
  • Klein EY, Sun L, Smith DL, Laxminarayan R. The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: a national observational study. Am J Epidemiol. 2013;177:666–674. doi:10.1093/aje/kws27323449778
  • Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. doi:10.1155/2016/247506727274985
  • Ansari S, Nepal HP, Gautam R, et al. Threat of drug resistant Staphylococcus aureus to health in Nepal. BMC Infect Dis. 2014;14:157. doi:10.1186/1471-2334-14-15724655316
  • Ansari S, Nepal HP, Gautam R, et al. Staphylococcus aureus: methicillin resistance and small colony variants from pyogenic infections of skin, soft tissue and bone. J Nepal Health Res Counc. 2015;13(30):126–132.26744197
  • ECDC. European Centre for Disease Prevention and Control. 2011 Annual epidemiological report 2011. Reporting on 2009 surveillance data and 2010 epidemic intelligence data. Available from: https://ecdc.europa.eu/en/publications-data/annual-epidemiological-report-2011-2009-data. Accessed November 10, 2011.
  • Najafi A. There is no escape from the ESKAPE pathogens; 2016 Available from: https://emerypharma.com/blog/eskapepathogens-explained/. Accessed November 29, 2016.
  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States; 2013 Available from: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed April, 2013.
  • Jean -S-S, Hsueh P-R. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents. 2011;37(4):291–295. doi:10.1016/j.ijantimicag.2011.01.00921382699
  • Centers for Disease Control and Prevention. Active bacterial core surveillance report, methicillin-resistant Staphylococcus aureus; 2012 Available from: https://www.cdc.gov/abcs/reports-findings/survreports/mrsa12.html. Accessed March 7, 2014.
  • Wojtyczka RD, Dziedzic A, Kepa M, et al. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative staphylococcus strains in vitro. Molecules. 2014;19:6583–6596. doi:10.3390/molecules1905658324858093
  • Tian L, Sun Z, Zhang Z. Antimicrobial resistance of pathogens causing nosocomial bloodstream infection in Hubei Province, China, from 2014 to 2016: a multicenter retrospective study. BMC Public Health. 2018;18:1121. doi:10.1186/s12889-018-6013-530219056
  • You JHS, Choi KW, Wong TY, et al. Disease burden, characteristics, and outcomes of methicillin-resistant Staphylococcus aureus bloodstream infection in Hong Kong. Asia Pac J Public Health. 2017;29(5):451–461. doi:10.1177/101053951771736528719790
  • Lim WW, Wu P, Bond HS, et al. Determinants of MRSA prevalence in the Asia Pacific Region: a systematic review and meta-analysis. J Global Antimicrobial Resist. 2018;16:17–27. doi:10.1016/j.jgar.2018.08.014
  • Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and antibiofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Res Lett. 2014;9:373. doi:10.1186/1556-276X-9-37325136281
  • DeLeo FR, Chambers HF. Re-emergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest. 2009;119:2464–2474. doi:10.1172/JCI3822619729844
  • Herigon JC, Hersh AL, Gerber JS, Zaoutis TE, Newland JG. Antibiotic management of Staphylococcus aureus infections in US children’s hospitals, 1999–2008. Pediatrics. 2010;125(6):e1294–e300. doi:10.1542/peds.2009-286720478934
  • Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355:666–674. doi:10.1056/NEJMoa05535616914702
  • Mandal SM, Ghosh AK, Pati BR. Dissemination of antibiotic resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant S. aureus strains isolated from hospital effluents. Am J Infect Control. 2015;43:e87–e8. doi:10.1016/j.ajic.2015.08.01526422180
  • Khamash DF, Voskertchian A, Tamma PD, et al. Increasing clindamycin and trimethoprim-sulfamethoxazole resistance in pediatric Staphylococcus aureus infections. J Pediatric Infect Dis Soc. 2018;XX(XX):1–3. (Ahead of print).
  • Enstrom J, Froding I, Giske CG, et al. USA300 methicillin resistant Staphylococcus aureus in Stockholm, Sweden, from 2008 to 2016. PLoS One. 2018;13(11):e0205761. doi:10.1371/journal.pone.020576130403684
  • George M, Iramiot JS, Muhindo R, Olupot-Olupot P, Nanteza A. Bacterial aetiology and antibiotic susceptibility profile of post-operative sepsis among surgical patients in a tertiary hospital in rural Eastern Uganda. Microbiol Res J Int. 2018;24(2):1–8. doi:10.9734/MRJI
  • Sutter DE, Milburn E, Chukwuma U, Dzialowy N, Maranich AM, Hospenthal DR. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics. 2016;137:e20153099. doi:10.1542/peds.2015-309926933211
  • Acree ME, Morgan E, David MZ. Staphylococcus aureus infections in Chicago, 2006–2014: increase in CA-MSSA and decrease in MRSA incidence. Infect Control Hosp Epidemiol. 2017;38:1226–1234. doi:10.1017/ice.2017.17728903801
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Rev Antimicrob Resist. 2016;84.
  • David MZ, Daum RS. Treatment of Staphylococcus aureus infections. Curr Top Microbiol Immunol. 2017;409:325–383. doi:10.1007/82_2017_4228900682
  • Leong HN, Kurup A, Tan MY, et al. Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics. Infect Drug Resist. 2018;11:1959–1974. doi:10.2147/IDR.S17236630464538
  • Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: a survey in a tertiary hospital in China. Int J Clin Exp Med. 2015;8(10):19436–19441.26770588
  • Goswami NN, Trivedi HR, Goswami APP, Patel TK, Tripathi CB. Antibiotic sensitivity profile of bacterial pathogens in postoperative wound infections at a tertiary care hospital in Gujarat, India. J Pharmacol Pharmacother. 2011;2:158–164. doi:10.4103/0976-500X.8327921897707
  • Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–1423. doi:10.2165/00003088-200342150-0000714674791
  • Natsumoto B, Yokota K, Omata F, Furukawa K. Risk factors for linezolid-associated thrombocytopenia in adult patients. Infection. 2014;42(6):1007–1012. doi:10.1007/s15010-014-0674-525119433
  • Lee CH, Wang MC, Huang IW, Chen FJ, Lauderdale TL. Development of daptomycin non susceptibility with heterogeneous vancomycin-intermediate resistance and oxacillin susceptibility in methicillin resistant Staphylococcus aureus during high-dose daptomycin treatment. Antimicrob Agents Chemother. 2010;54:4038–4040. doi:10.1128/AAC.00533-1020585116
  • Sabat AJ, Tinelli M, Grundmann H, et al. Daptomycin resistant Staphylococcus aureus clinical strain with novel non-synonymous mutations in the mprF and vraS genes: A new insight into daptomycin resistance. Front Microbiol. 2018;9:2705. doi:10.3389/fmicb.2018.0270530459746
  • World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. Accessed February 27, 2017.
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updates. 2016;26:43–57. doi:10.1016/j.drup.2016.04.002
  • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LdS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353. doi:10.3389/fmicb.2013.0007724367355
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–250. doi:10.1038/nrmicro109815703760
  • Taheri B, Mohammadi M, Nabipour I, Momenzadeh N, Roozbehani M, Bhunia A. Identification of novel antimicrobial peptide from Asian sea bass (lates calcarifer) by in silico and activity characterization. PLoS One. 2018;13(10):e0206578. doi:10.1371/journal.pone.020657830365554
  • Sanches PRS, Carneiro BM, Batista MN, et al. A conjugate of the lytic peptide hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids. 2015;47(7):1433–1443. doi:10.1007/s00726-015-1980-725868656
  • Jelinkova P, Splichal Z, Jimenez AMJ, et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant. Infect Drug Resist 2018;11:1807–1817. doi:10.2147/IDR.S16097530349337
  • Leszczyńska K, Namiot A, Janmey PA, Bucki R. Modulation of exogenous antibiotic activity by host cathelicidin LL-37. APMIS. 2010;118:830–836. doi:10.1111/j.1600-0463.2010.02667.x20955455
  • Koppen BC, Mulder PPG, de Boer L, et al. Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents. 2019;53(2):143–151. doi:10.1016/j.ijantimicag.2018.10.00230315918
  • Hostettman K, Hostettman M. Methods in plant biochemistry, in plant phenolics, ed. P. M. Dey and J. B. Harbone. 1989;1:493.
  • Roberts JC. Naturally occurring xanthones. Chem Rev. 1961;61(6):591–605. doi:10.1021/cr60214a003
  • Gales L, Damas AM. Xanthones-a structural perspective. Curr Med Chem. 2005;12(21):2499–2515.16250874
  • Pinto MM, Sousa ME, Nascimento MS. Xanthone derivatives: new insights in biological activities. Curr Med Chem. 2005;12(21):2517–2538.16250875
  • Na Y. Recent cancer drug development with xanthone structures. J Pharm Pharmacol. 2009;61(6):707–712. doi:10.1211/jpp/61.06.000219505360
  • Panda SS, Chand M, Sakuja R, Jain SC. Xanthones as potential antioxidants. Curr Med Chem. 2013;20(36):4481–4507.23834190
  • Chen X, Leng J, Rakesh KP, et al. Synthesis and molecular docking studies of xanthone attached amino acids as potential antimicrobial and anti-inflammatory agents. Med Chem Commun. 2017;8:1706–1719. doi:10.1039/C7MD00209B
  • Miklasinska-Majdanik M, Kepa M, Wojtyczka RD, et al. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int J Environ Res Public Health. 2018;15:E2321. doi:10.3390/ijerph1506118830360435
  • Shi SF, Jia JF, Guo XK, et al. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int J Nanomed. 2017;11:6499–6506. doi:10.2147/IJN.S41371
  • Morones JR, Elechiguerra JL, Camacho A, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005;16:2346–2353. doi:10.1088/0957-4484/16/10/059
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2008;27:76–83. doi:10.1016/j.biotechadv.2008.09.00218854209
  • Duran N, Marcato P, De Conti R, Alves O. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21:949. doi:10.1590/S0103-50532010000600002
  • Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich A. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 2009;53:3538. doi:10.1128/AAC.01106-0819528287
  • Kora AJ, Rastogi L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl. 2013;2013:871097. doi:10.1155/2013/87109723970844
  • Thirumurugan G, Rao S, Dhanaraju M. Elucidating pharmacodynamics interaction of silver nanoparticle-topical deliverable antibiotics. Sci Rep. 2016;6:29982. doi:10.1038/srep2998227427207
  • Rahim K, Mohamed A. Bactericidal and antibiotic 241 synergistic effect of nanosilver against methicillin-resistant Staphylococcus aureus. Jundishapur J Microbiol. 2015;8:11.
  • Das P, Saulnier E, Carlucci C, Allen-Vercoe E, Shah V, Walker VK. Interaction between a broad-spectrum antibiotic and silver nanoparticles in a human gut ecosystem. J Nanomed Nanotechnol. 2016;7(5):1000408.
  • Surwade P, Ghildyal C, Weikel C, et al. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J Antibiotics. 2019;72(1):50–53. doi:10.1038/s41429-018-0111-630361634
  • Manukumar HM, Chandrasekhar B, Rakesh KP, et al. Novel T-C@AgNPs mediated biocidal mechanism against biofilm associated methicillin-resistant Staphylococcus aureus (Bap-MRSA) 090, cytotoxicity and its molecular docking studies. Med Chem Commun. 2017;8:2181–2194. doi:10.1039/C7MD00486A
  • Xu Z, Manukumar HM, Rakesh KP, et al. Role of BP*C@AgNPs in Bap-dependent multicellular behavior of clinically important methicillin-resistant Staphylococcus aureus (MRSA) biofilm adherence: a key virulence study. Microb Pathog. 2018;123:275–284. doi:10.1016/j.micpath.2018.07.02530041001
  • O’Brien EC, McLoughlin RM. Considering the ‘alternatives’ for next-generation anti-Staphylococcus aureus Vaccine Development. Trends in Mol Med. 2019;25(3):S1471–4914.
  • Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res. 2013;378:35–44. doi:10.1016/j.carres.2013.05.00723746650
  • Trotter CL, McVernon J, Ramsay ME, et al. Optimising the use of conjugate vaccines to prevent disease caused by Haemophilus influenzae type b, Neisseria meningitidis and Streptococcus pneumoniae. Vaccine. 2008;26:4434–4445. doi:10.1016/j.vaccine.2008.05.07318617296
  • O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004;17:218–234.14726462
  • Cocchiaro JL, Gomez MI, Risley A, Solinga R, Sordelli DO, Lee JC. Molecular characterization of the capsule locus from non-typeable Staphylococcus aureus. Mol Microbiol. 2006;59:948–960. doi:10.1111/j.1365-2958.2005.04978.x16420363
  • Arbeit RD, Karakawa WW, Vann WF, Robbins JB. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis. 1984;2:85–91.6232086
  • Hochkeppel HK, Braun DG, Vischer W, et al. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol. 1987;25:526–530.2437148
  • Nanra JS, Timofeyeva Y, Buitrago SM, et al. Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: implications for vaccine design. Vaccine. 2009;27:3276–3280. doi:10.1016/j.vaccine.2009.01.06219200819
  • Shinefield H, Black S, Fattom A, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med. 2002;346:491–496. doi:10.1056/NEJMoa01129711844850
  • Fattom A, Matalon A, Buerkert J, et al. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. HumVaccin ImmunoTher. 2015;11:632–641.
  • Rozemeijer W, Fink P, Rojas E, et al. Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease. PLoS One. 2015;10(2):e0116945. doi:10.1371/journal.pone.011694525719409
  • Begier E, Seiden DJ, Patton M, et al. SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine. 2017;35(8):1132–1139. doi:10.1016/j.vaccine.2017.01.02428143674
  • Frenck RJ, Creech CB, Sheldon EA, et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine. 2017;35(2):375–384. doi:10.1016/j.vaccine.2016.11.01027916408
  • Creech CB, Frenck RJ, Sheldon EA, et al. Safety, tolerability, and immunogenicity of a single dose 4-antigen or 3-antigen Staphylococcus aureus vaccine in healthy older adults: results of a randomised trial. Vaccine. 2017;35(2):385–394. doi:10.1016/j.vaccine.2016.11.03227866765
  • Marshall H, Nissen M, Richmond P, et al. Safety and immunogenicity of a booster dose of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults: A randomized phase 1 study. J Infect. 2016;73(5):437–454. doi:10.1016/j.jinf.2016.08.00427519620
  • Nissen M, Marshall H, Richmond P, et al. A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine. 2015;33(15):1846–1854. doi:10.1016/j.vaccine.2015.02.02425707693
  • Fowler VG, Allen KB, Moreira ED, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. J Am Med Assoc. 2013;309(13):1368–1378. doi:10.1001/jama.2013.3010
  • Xu X, Zhu H, Lv H. Safety of Staphylococcus aureus four-antigen and three-antigen vaccines in healthy adults: a meta-analysis of randomized controlled trials. Hum Vaccin Immunother. 2018;14(2):314–321. doi:10.1080/21645515.2017.139554029064736
  • Dupont CD, Scully IL, Zimnisky RM, et al. Two vaccines for Staphylococcus aureus induce a B-cell mediated immune response. mSphere. 2018;3:e00217–e18. doi:10.1128/mSphere.00217-1830135219
  • Frenck RW Jr, Creech CB, Sheldon EA, et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine. 2017;35:375–384. doi:10.1016/j.vaccine.2016.11.01027916408
  • Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24:10–20. doi:10.1038/nm.446529315295
  • Mohamed N, Wang MY, Le Huec JC, et al. Vaccine development to prevent Staphylococcus aureus surgical-site infections. Br J Surgery. 2017;104:e41–e54. doi:10.1002/bjs.10454
  • Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins. 2013;5:1140–1166.23888516
  • Genestier AL, Michallet MC, Prevost G, et al. Staphylococcus aureus Panton-Valentine LEUKOCIDIN directly targets mitochondria and induces bax-independent apoptosis of human neutrophils. J Clin Invest. 2005;115:3117–3127. doi:10.1172/JCI2268416276417
  • Adhikari RP, Ajao AO, Aman MJ, et al. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J Infect Dis. 2012;206:915–923. doi:10.1093/infdis/jis46222807524
  • Landrum ML, Lalani T, Niknian M, et al. Safety and immunogenicity of a recombinant Staphylococcus aureus alpha-toxoid and a recombinant Panton-Valentine leukocidin subunit, in healthy adults. Hum Vaccin Immunother. 2017;13(4):791–801. doi:10.1080/21645515.2016.124832628010246
  • Korea CG, Balsamo G, Pezzicoli A, et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun. 2014;82(10):4144–4153. doi:10.1128/IAI.01576-1425047846
  • Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102(4):1169–1174. doi:10.1073/pnas.040562010215657139
  • Xu C, Zhang B-Z, Lin Q, et al. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect Dis. 2018;18:195. doi:10.1186/s12879-018-3104-y29699491
  • Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol. 2012;34:281–297. doi:10.1007/s00281-011-0291-722037948
  • Becker S, Frankel MB, Schneewind O, Missiakas D. Release of protein A from the cell wall of Staphylococcus aureus Proc Natl Acad Sci USA. 2014;111:1574–1579. doi:10.1073/pnas.131718111124434550
  • Pauli NT, Kim HK, Falugi F, et al. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. J Exp Med. 2014;211:2331–2339. doi:10.1084/jem.2014140425348152
  • Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections. J Exp Med. 2010;207:1863–1870. doi:10.1084/jem.2009251420713595
  • Yang Y, Yu R, Yang X, et al. Protection against Staphylococcus aureus and tetanus infections by a combined vaccine containing SasA and TeNT-Hc in mice. Mol Med Rep. 2017;15:2369–2373. doi:10.3892/mmr.2017.622728259925
  • Cava F, Lam H, de Pedro MA, Waldor MK. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci. 2011;68:817–831. doi:10.1007/s00018-010-0571-821161322
  • Moscoso M, Garcıa P, Cabral MP, Rumbo C, Bou G. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus. Virulence. 2018;9(1):604–620. doi:10.1080/21505594.2017.141772329297750
  • Zhang B-Z, Cai J, Yu B, et al. Immunotherapy targeting adenosine synthase a decreases severity of Staphylococcus aureus infection in mouse model. J Infect Dis. 2017;216:245–253. doi:10.1093/infdis/jix29028633319
  • Mcadow M, Dedent AC, Emolo C, et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun. 2012;80:3389e98. doi:10.1128/IAI.06224-1122825443
  • Pozzi C, Bagnoli F, Rappuoli R. Staphylococcus aureus coagulase R domain, a new evasion mechanism and vaccine target. J Exp Med. 2016;213:292. doi:10.1084/jem.2015191626951364
  • Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog. 2012;8:e1002434. doi:10.1371/journal.ppat.100243422253592
  • Qian M, Zhao T, Li R, et al. Targeting the R domain of coagulase by active vaccination protects mice against lethal Staphylococcus aureus infection. Microbes Infect. 2018:S1286–4579. (18)30177-1.
  • Krakauer T, Pradhan K, Stiles BG. Staphylococcal superantigens spark host-mediated danger signals. Front Immunol. 2016;7:23. doi:10.3389/fimmu.2016.0002326870039
  • Kulhankova K, King J, Salgado-Pabon W. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression. Immunol Res. 2014;59:182–187. doi:10.1007/s12026-014-8538-824816557
  • Mantis NJ. Vaccines against the category B toxins: staphylococcal enterotoxin B, epsilon toxin and ricin. Adv Drug Deliv Rev. 2005;57:1424e1439. doi:10.1016/j.addr.2005.01.01715935880
  • Choi JY, Shin S, Kim NY, et al. A novel staphylococcal enterotoxin B subunit vaccine candidate elicits protective immune response in a mouse model. Toxicon. 2017;131:68–77. doi:10.1016/j.toxicon.2017.03.01228359755
  • Tkaczyk C, Hua L, Varkey R, et al. Identification of anti-alpha toxin mAbs that reduce severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol. 2012;19:377–385. doi:10.1128/CVI.05589-1122237895
  • Kennedy AD, Bubeck Wardenburg J, Gardner DJ, et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis. 2010;202:1050–1058. doi:10.1086/65604320726702
  • Ragle BE, Bubeck Wardenburg J. Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun. 2009;77:2712–2718. doi:10.1128/IAI.00115-0919380475
  • Cheung GY, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets. 2012;16(6):601–612. doi:10.1517/14728222.2012.68257322530584
  • Varshney AK, Kuzmicheva GA, Lin J, et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One. 2018;13(1):e0190537. doi:10.1371/journal.pone.019053729364906
  • Kalali Y, Haghighat S, Mahdavi M. Passive immunotherapy with specific IgG fraction against autolysin: analogous protectivity in the MRSA infection with antibiotic therapy. Immunol Lett. 2018;S0165–2478. (18)30132-9.
  • Diep BA, Le VTM, Visram ZC, et al. Improved protection in a rabbit model of community-associated methicillin-resistant Staphylococcus aureus necrotizing pneumonia upon neutralization of leukocidins in addition to alpha-hemolysin. Antimicrob Agents Chemother. 2016;60(10):6333–6340. doi:10.1128/AAC.01213-1627527081
  • Stulik L, Rouha H, Labrousse D, et al. Preventing lung pathology and mortality in rabbit Staphylococcus aureus pneumonia models with cytotoxin-neutralizing monoclonal IgGs penetrating the epithelial lining fluid. Sci Rep. 2019;9:5339. doi:10.1038/s41598-019-41826-630926865
  • Haghighat S, Siadat SD, Rezayat Sorkhabadi SM, et al. Recombinant PBP2a as a vaccine candidate against methicillin-resistant Staphylococcus aureus: immunogenicity and protectivity. Microb Pathog. 2017;108:32–39. doi:10.1016/j.micpath.2017.04.03728457901
  • Naghshbandi RZ, Haghighat S, Mahdavi M. Passive immunization against methicillin resistant Staphylococcus aureus recombinant PBP2a in sepsis model of mice: comparable results with antibiotic therapy. Int Immunopharmacol. 2018;56:186–192. doi:10.1016/j.intimp.2018.01.03529414649
  • Gerlach D, Guo Y, De Castro C, et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature. 2018;563(7733):705–709. doi:10.1038/s41586-018-0730-x30464342