79
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Simulating moxalactam dosage for extended-spectrum β-lactamase-producing Enterobacteriaceae using blood antimicrobial surveillance network data

, , , , , , & show all
Pages 1199-1208 | Published online: 08 May 2019

References

  • Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev. 2013;65(3):1053–1090. doi:10.1124/pr.111.00576923803529
  • Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, et al. Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother. 2007;51(10):3599–3604. doi:10.1128/AAC.00296-0717646421
  • De Rosa FG, Pagani N, Fossati L, et al. The effect of inappropriate therapy on bacteremia by ESBL-producing bacteria. Infection. 2011;39(6):555–561. doi:10.1007/s15010-011-0201-x22048926
  • Scheuerman O, Schechner V, Carmeli Y, et al. Comparison of predictors and mortality between bloodstream infections caused by ESBL-producing Escherichia coli and ESBL-producing Klebsiella pneumoniae. Infect Cont Hosp Ep. 2018;39(6):660–667. doi:10.1017/ice.2018.63
  • Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother. 2006;50(2):498–504. doi:10.1128/AAC.50.2.498-504.200616436702
  • Goodman KE, Lessler J, Cosgrove SE, et al. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum beta-lactamase-producing organism. Clin Infect Dis. 2016;63(7):896–903. doi:10.1093/cid/ciw42527358356
  • Shorr AF, Tabak YP, Killian AD, Gupta V, Liu LZ, Kollef MH. Healthcare-associated bloodstream infection: A distinct entity? Insights from a large U.S. database. Crit Care Med. 2006;34(10):2588–2595. doi:10.1097/01.CCM.0000239121.09533.0916915117
  • Ofer-Friedman H, Shefler C, Sharma S, et al. Carbapenems versus piperacillin-tazobactam for bloodstream infections of nonurinary source caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36(8):981–985. doi:10.1017/ice.2015.10125990361
  • Yang CC, Li SH, Chuang FR, et al. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect Dis. 2012;12:206. doi:10.1186/1471-2334-12-16622947300
  • Falcone M, Vena A, Mezzatesta ML, et al. Role of empirical and targeted therapy in hospitalized patients with bloodstream infections caused by ESBL-producing Enterobacteriaceae. Ann Ig. 2014;26(4):293–304. doi:10.7416/ai.2014.198925001119
  • Hu F, Guo Y, Zhu D, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance. Chin J Infect Chemother. 2017;17(1):93–99.
  • Harris PN, Tambyah PA, Paterson DL. beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(4):475–485. doi:10.1016/S1473-3099(14)70950-825716293
  • Nguyen HM, Shier KL, Graber CJ. Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2014;69(4):871–880. doi:10.1093/jac/dkt45024265230
  • Lee CH, Su LH, Tang YF, Liu JW. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: a retrospective study and laboratory analysis of the isolates. J Antimicrob Chemother. 2006;58(5):1074–1077. doi:10.1093/jac/dkl38116971415
  • Ito A, Tatsumi Y, Wajima T, Nakamura R, Tsuji M. Potent antibacterial activities of latamoxef (moxalactam) against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation. Jpn J Antibiot. 2014;67(2):109–122.24956910
  • Wang H, Zhang B, Ni Y, et al. Pharmacodynamic target attainment of seven antimicrobials against Gram-negative bacteria collected from China in 2003 and 2004. Int J Antimicrob Agents. 2007;30(5):452–457. doi:10.1016/j.ijantimicag.2007.06.00517646088
  • Yu G, Chang T, Sun W, et al. Optimization of β-lactam treatment regimens for extended-spectrum β-lactamases-producing strains infections based on pharmacokinetics/pharmacodynamics. Chin J Nosocomiology. 2009;19(22):3108–3110.
  • Yu G, Chen G, Gao C, et al. Evaluation of β-lactam treatment regimens for gram-negative infections using Monte Carlo simulation. COMPUT Appl Chem. 2010;27(11):001553–001556.
  • Zhou H, Li G, Chen B, et al. Chinese experts concensus on the treatment of infections caused by ESBL-producing Enterobacteriaceae. Natl Med J China. 2014;94(24):1847–1856.
  • Xiao Y, Hu Y. The reliability of using impenem, meropenem, cefoperazone-sulbactam and piperacillin-tazobactam to treat nosocomial gram-negative bacterial infections with Monte Carlo simulation. Chin J Intern Med. 2017;56(8):595–600.
  • Cai T, Ye L. Pharmacodynamics of prolonged and continuous infusion regimens of three β-lactam antimicrobial agents against extended-spectrum β-lactamases producing bacteria. Chin J Nosocomiology. 2010;20(14):2110–2113.
  • Chen S, Fan J. Optimization of latamoxef regimens for ESBLs-producing Enterobacteriaceae infection by Monte-Carlo simulation method. China Pharm. 2013;6:509–511.
  • Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol. 2017;36(5):807–812. doi:10.1007/s10096-016-2864-9
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th informational supplement; 2016. Available from: http://www.clsi.org/. Accessed January 5, 2016.
  • Jones RN, Barry AL, Packer RR, Gregory WW, Thornsberry C. In vitro antimicrobial spectrum, occurrence of synergy, and recommendations for dilution susceptibility testing concentrations of the cefoperazone-sulbactam combination. J Clin Microbiol. 1987;25(9):1725–1729.3498740
  • Hansen DS, Schumacher H, Hansen F, et al. Extended-spectrum beta-lactamase (ESBL) in Danish clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence, beta-lactamase distribution, phylogroups, and co-resistance. Scand J Infect Dis. 2012;44(3):174–181. doi:10.3109/00365548.2011.63264222364227
  • Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab. 2010;30(1):150–161. doi:10.1038/jcbfm.2009.20019756019
  • Israel KS, Black HR, Brier GL, Wolny JD, DeSante KA. Single- and multiple-dose pharmacokinetics of moxalactam in normal subjects. Antimicrob Agents Chemother. 1982;22(1):94–102.6214998
  • Wei M, Zhao C, Qi H, et al. Pharmacokinetics of sulbactam/cefoperazon (1:1) in healthy adult and old people. Chin J Clin Pharmacol. 2007;23(1):28–32.
  • Nye KJ, Shi YG, Andrews JM, Wise R. Pharmacokinetics and tissue penetration of cefepime. J Antimicrob Chemother. 1989;24(1):23–28.
  • DeRyke CA, Kuti JL, Nicolau DP. Pharmacodynamic target attainment of six beta-lactams and two fluoroquinolones against Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and Klebsiella species collected from United States intensive care units in 2004. Pharmacotherapy. 2007;27(3):333–342. doi:10.1592/phco.27.3.33317316145
  • Kuti JL, Nightingale CH, Nicolau DP. Optimizing pharmacodynamic target attainment using the MYSTIC antibiogram: data collected in North America in 2002. Antimicrob Agents Chemother. 2004;48(7):2464–2470. doi:10.1128/AAC.48.7.2464-2470.200415215095
  • Li C, Sun J, Miao J, et al. Using Monte Carlo simulation to determine optimal dosing regimen for cefetamet sodium for injection. J Chemother. 2016;28(3):172–179. doi:10.1179/1973947814Y.000000021425252727
  • Micek S, Johnson MT, Reichley R, Kollef MH. An institutional perspective on the impact of recent antibiotic exposure on length of stay and hospital costs for patients with gram-negative sepsis. BMC Infect Dis. 2012;12:56. doi:10.1186/1471-2334-12-16622414209
  • Ambrose PG, Bhavnani SM, Jones RN. Pharmacokinetics-pharmacodynamics of cefepime and piperacillin-tazobactam against Escherichia coli and Klebsiella pneumoniae strains producing extended-spectrum-lactamases: report from the ARREST program. Antimicrob Agents Chemother. 2003;47(5):1643–1646.12709334
  • Quan JJ, Wang Y, Ji JS, et al. The activity of moxalactam against Enterobacteriaceae and anaerobia in vitro. Zhonghua Yi Xue Za Zhi. 2016;96(18):1459–1464. doi:10.3760/cma.j.issn.0376-2491.2016.18.01527266357
  • Huang C, Zheng B, Yu W, et al. Antibacterial effect evaluation of moxalactam against extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation. Infect Drug Resist. 2018;11:103–112. doi:10.2147/IDR.S15043129391816
  • Yang Q, Zhang H, Cheng J, et al. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum beta-lactamases in China. Int J Antimicrob Agents. 2015;45(5):485–490. doi:10.1016/j.ijantimicag.2014.11.01225600890
  • Wang R, Cosgrove SE, Tschudin-Sutter S, et al. Cefepime therapy for cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae bacteremia. Open Forum Infect Dis. 2016;3(3):ofw132. doi:10.1093/ofid/ofw13227419191
  • Andes D, Craig WA. Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect. 2005;11(Suppl 6):10–17. doi:10.1111/j.1469-0691.2005.01265.x16209701
  • Guo H, Qin J, Xiang J. Surveillance for and susceptibility of Acinetobacter baumannii in a large hospital and burn center in Shanghai, China, 2007–2013. Am J Infect Control. 2016;44(12):1718–1719. doi:10.1016/j.ajic.2016.06.01427544791
  • Matsumura Y, Yamamoto M, Nagao M, et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-beta-lactamase-producing Escherichia coli bacteremia. Antimicrob Agents Chemother. 2015;59(9):5107–5113. doi:10.1128/AAC.00701-1526100708
  • Reitberg DP, Marble DA, Schultz RW, Whall TJ, Schentag JJ. Pharmacokinetics of cefoperazone (2.0 G) and sulbactam (1.0 G) coadministered to subjects with normal renal-function, patients with decreased renal-function, and patients with end-stage renal-disease on hemodialysis. Antimicrob Agents Chemother. 1988;32(4):503–509.3377461
  • Carmine AA, Brogden RN, Heel RC, Romankiewicz JA, Speight TM, Avery GS. Moxalactam (latamoxef). A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1983;26(4):279–333. doi:10.2165/00003495-198326040-000016354685
  • Wynd MA, Paladino JA. Cefepime: a fourth-generation parenteral cephalosporin. Ann Pharmacother. 1996;30(12):1414–1424. doi:10.1177/1060028096030012118968455
  • Kim MK, Capitano B, Mattoes HM, et al. Pharmacokinetic and pharmacodynamic evaluation of two dosing regimens for piperacillin-tazobactam. Pharmacotherapy. 2002;22(5):569–577.12013355
  • Kuti JL, Florea NR, Nightingale CH, Nicolau DP. Pharmacodynamics of meropenem and imipenem against Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Pharmacotherapy. 2004;24(1):8–15.14740783
  • Barbhaiya RH, Forgue ST, Gleason CR, et al. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36(3):552–557.1622165
  • Meyers BR, Hirschman SZ, Giron J, Srulevitch ES. Pharmacokinetic studies of single and multiple doses of moxalactam (moxam) in normal volunteers. Clin Trials J. 1982;19(2):63–73.
  • McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351. doi:10.1016/j.ijantimicag.2007.12.00918313273