138
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Characterization and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1

, , , , &
Pages 655-665 | Published online: 21 Mar 2019

References

  • Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research. 2017;6:1261. doi:10.12688/f1000research.10506.128794863
  • Hengge R, Grundling A, Jenal U, Ryan R, Yildiz F. Bacterial signal transduction by cyclic Di-GMP and other nucleotide second messengers. J Bacteriol. 2016;198(1):15–26. doi:10.1128/JB.00331-1526055111
  • Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52. doi:10.1128/MMBR.00043-1223471616
  • Ryan RP, Fouhy Y, Lucey JF, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A. 2006;103(17):6712–6717. doi:10.1073/pnas.060034510316611728
  • Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol. 2005;187(5):1792–1798. doi:10.1128/JB.187.5.1792-1798.200515716451
  • Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol. 2005;187(14):4774. doi:10.1128/JB.187.13.4444-4450.200515995192
  • Galperin MY. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 2005;5(1):1–19. doi:10.1186/1471-2180-5-115649330
  • Kulasakara H, Lee V, Brencic A, et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3ʹ-5ʹ)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A. 2006;103(8):2839–2844. doi:10.1073/pnas.051109010316477007
  • Güvener ZT, Harwood CS. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol. 2010;66(6):1459–1473.
  • Kazmierczak BI, Lebron MB, Murray TS. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol. 2010;60(4):1026–1043. doi:10.1111/j.1365-2958.2006.05156.x
  • Merritt JH, Brothers KM, Kuchma SL, O’Toole GA. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol. 2007;189(22):8154. doi:10.1128/JB.00581-0717586642
  • Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7335–7343. doi:10.1128/JB.00599-0617050921
  • Newell PD, Monds RD, O’Toole GA. LapD is a bis-(3ʹ,5ʹ)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A. 2009;106(9):3461–3466. doi:10.1073/pnas.080893310619218451
  • Rossello J, Lima A, Gil M, et al. The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Sci Rep. 2017;7(1):10281. doi:10.1038/s41598-017-09926-328860517
  • Valentini M, Laventie BJ, Moscoso J, Jenal U, Filloux A. The diguanylate cyclase HsbD intersects with the HptB regulatory cascade to control Pseudomonas aeruginosa biofilm and motility. PLoS Genet. 2016;12(10):e1006473. doi:10.1371/journal.pgen.100647327902688
  • Ying C, Liu S, Liu C, et al. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation. Sci Rep. 2016;6:29499. doi:10.1038/srep2949927388857
  • Seshasayee AS, Fraser GM, Luscombe NM. Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucleic Acids Res. 2010;38(18):5970–5981. doi:10.1093/nar/gkq38220483912
  • Dahlstrom KM, Collins AJ, Doing G, et al. A multimodal strategy used by a large c-di-GMP network. J Bacteriol. 2018;200(8). doi:10.1128/JB.00703-17.
  • Sarenko O, Klauck G, Wilke FM, et al. More than enzymes that make or break cyclic Di-GMP-Local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. mBio. 2017;8(5). doi:10.1128/mBio.01639-17.
  • Zhulin IB, Nikolskaya AN, Galperin MY. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol. 2003;185(1):285–294.12486065
  • Bernier SP, Ha DG, Khan W. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol. 2011;162(7):680–688. doi:10.1016/j.resmic.2011.04.01421554951
  • Webb B, Sali A. Protein structure modeling with Modeller. Methods Mol Biol. 2017;1654:39–54. doi:10.1007/978-1-4939-7231-9_428986782
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi:10.1002/jcc.2008415264254
  • Jacobs MA, Alwood A, Thaipisuttikul I, et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003;100(24):14339–14344. doi:10.1073/pnas.203628210014617778
  • Giardina G, Paiardini A, Fernicola S, et al. Investigating the allosteric regulation of YfiN from Pseudomonas aeruginosa: clues from the structure of the catalytic domain. PLoS One. 2013;8(11):e81324. doi:10.1371/journal.pone.008132424278422
  • Wassmann P, Chan C, Paul R, et al. Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure. 2007;15(8):915–927. doi:10.1016/j.str.2007.06.01617697997
  • De N, Navarro MV, Raghavan RV, Sondermann H. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J Mol Biol. 2009;393(3):619–633. doi:10.1016/j.jmb.2009.08.03019695263
  • Strempel N, Nusser M, Neidig A, Brennerweiss G, Overhage J. The oxidative stress agent hypochlorite stimulates c-di-GMP synthesis and biofilm formation in Pseudomonas aeruginosa. Front Microbiol. 2017;8:2311. doi:10.3389/fmicb.2017.0231129213262
  • Li K, Yang G, Debru AB, et al. SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling. Front Microbiol. 2017;8:1045. doi: 10.3389/fmicb.2017.01045
  • Römling U, Liang ZX, Dow JM. Progress in understanding the molecular basis underlying functional diversification of cyclic dinucleotide turnover proteins. J Bacteriol. 2017;199(5):JB.00790–00716. doi:10.1128/JB.00790-16
  • Kumar B, Sorensen JL, Cardona ST. A c-di-GMP-modulating protein regulates swimming motility of burkholderia cenocepacia in response to arginine and glutamate. Front Cell Infect Microbiol. 2018;8. doi:10.3389/fcimb.2018.00056
  • Mills E, Petersen E, Kulasekara BR, Miller SI. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway. Sci Signal. 2015;8(380):ra57. doi:10.1126/scisignal.aaa179626060330
  • Basu RA, Sauer K. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol. 2014;94(4):771. doi:10.1111/mmi.1280225243483
  • Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: a model for early phase symbiotic evolution. Crit Rev Microbiol. 2016;42(1):144–157. doi:10.3109/1040841X.2014.90723524766052
  • Ren GX, Fan S, Guo XP, Chen S, Sun YC. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis. Front Microbiol. 2016;7(8412):821. doi:10.3389/fmicb.2016.0082127375563
  • Giacalone D, Smith TJ, Collins A, Sondermann H, Koziol LJ, O’Toole G. Ligand-mediated biofilm formation via enhanced physical interaction between a diguanylate cyclase and its receptor. mBio. 2018;9(4). doi:10.1128/mBio.01254-18