150
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Drug–drug interaction study of imatinib and voriconazole in vitro and in vivo

, , , &
Pages 1021-1027 | Published online: 30 Apr 2019

References

  • van Leeuwen RW, van Gelder T, Mathijssen RH, Jansman FG. Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol. 2014;15(8):e315–e326. doi:10.1016/S1470-2045(13)70579-524988935
  • Dookeeram D, Bidaisee S, Paul JF, et al. Polypharmacy and potential drug-drug interactions in emergency department patients in the Caribbean. Int J Clin Pharm. 2017;39(5):1119–1127. doi:10.1007/s11096-017-0520-928795285
  • Rodrigues MCS, de Oliveira C. Drug-drug interactions and adverse drug reactions in polypharmacy among older adults: an integrative review. Rev Lat Am Enfermagem. 2016;24: e2800.
  • Gu H, Dutreix C, Rebello S, et al. Simultaneous physiologically based pharmacokinetic (PBPK) modeling of parent and active metabolites to investigate complex CYP3A4 drug-drug interaction potential: a case example of midostaurin. Drug Metab Dispos. 2018;46(2):109–121. doi:10.1124/dmd.117.07800629117990
  • Luo M, Dai MY, Lin HT, et al. Species-related exposure of phase II metabolite gemfibrozil 1-O–glucuronide between human and mice: a net induction of mouse P450 activity was revealed. Biopharm Drug Dispos. 2017;38(9):535–542. doi:10.1002/bdd.210528946176
  • Groll AH, Castagnola E, Cesaro S, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014;15(8):e327–e340. doi:10.1016/S1470-2045(13)70510-224988936
  • Solano C, Slavin M, Shaul AJ, et al. Economic evaluation of azoles as primary prophylaxis for the prevention of invasive fungal infections in Spanish patients undergoing allogeneic haematopoietic stem cell transplant. Mycoses. 2017;60(2):79–88. doi:10.1111/myc.1255227562016
  • Alanio A, Denis B, Hamane S, et al. Azole resistance of aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg Infect Dis. 2016;22(1):157–158. doi:10.3201/eid2201.15084826690934
  • Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55(10):4782–4788. doi:10.1128/AAC.01083-1021768513
  • Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–547.12695341
  • Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–211. doi:10.1086/52466918171251
  • Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2012 Update on diagnosis, monitoring, and management. Am J Hematol. 2012;87(11):1038–1045. doi:10.1002/ajh.23282
  • Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–884. doi:10.1182/blood-2013-05-50156923803709
  • Manley PW, Blasco F, Mestan J, Aichholz R. The kinetic deuterium isotope effect as applied to metabolic deactivation of imatinib to the des-methyl metabolite, CGP74588. Bioorg Med Chem. 2013;21(11):3231–3239. doi:10.1016/j.bmc.2013.03.03823611771
  • Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879–894. doi:10.2165/00003088-200544090-0000116122278
  • Herbrink M, Nuijen B, Schellens JHM, Beijnen JH. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev. 2015;41(5):412–422. doi:10.1016/j.ctrv.2015.03.00525818541
  • Hachem R, Gomes MZ, El Helou G, et al. Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J Antimicrob Chemother. 2014;69(11):3148–3155. doi:10.1093/jac/dku24125006241
  • Lin G, Wang C, Qiu X, et al. Differential effects of ketoconazole, itraconazole and voriconazole on the pharmacokinetics of imatinib and its main metabolite GCP74588 in rat. Drug Dev Ind Pharm. 2014;40(12):1616–1622.24053419
  • Luo X, Li T, Yu Z, et al. The impact of azole antifungal drugs on imatinib metabolism in human liver microsomes. Xenobiotica. 2018;1–18.
  • O‘Brien SG, Meinhardt P, Bond E, et al. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer. 2003;89(10):1855–1859. doi:10.1038/sj.bjc.660115214612892
  • Xu RA, Lin Q, Qiu X, et al. UPLC-MS/MS method for the simultaneous determination of imatinib, voriconazole and their metabolites concentrations in rat plasma. J Pharm Biomed Anal. 2019;166:6–12. doi:10.1016/j.jpba.2018.12.03630594035
  • Wang Z, Sun W, Huang CK, et al. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes. Drug Dev Ind Pharm. 2015;41(4):613–616. doi:10.3109/03639045.2014.88669724517573
  • Beumer JH, Pillai VC, Parise RA, et al. Human hepatocyte assessment of imatinib drug-drug interactions – complexities in clinical translation. Br J Clin Pharmacol. 2015;80(5):1097–1108. doi:10.1111/bcp.1272326178713
  • Dutreix C, Peng B, Mehring G, et al. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol. 2004;54(4):290–294. doi:10.1007/s00280-004-0832-z15138710
  • Gambillara E, Laffitte E, Widmer N, et al. Severe pustular eruption associated with imatinib and voriconazole in a patient with chronic myeloid leukemia. Dermatology. 2005;211(4):363–365. doi:10.1159/00008851016286749
  • van Erp NP, Gelderblom H, Karlsson MO, et al. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res. 2007;13(24):7394–7400. doi:10.1158/1078-0432.CCR-07-034618094422
  • Yamazaki H, Inoue K, Shaw PM, Checovich WJ, Guengerich FP, Shimada T. Different contributions of cytochrome P450 2C19 and 3A4 in the oxidation of omeprazole by human liver microsomes: effects of contents of these two forms in individual human samples. J Pharmacol Exp Ther. 1997;283(2):434–442.9353355
  • Mikus G, Schowel V, Drzewinska M, et al. Potent cytochrome P4502C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther. 2006;80(2):126–135. doi:10.1016/j.clpt.2006.04.00416890574
  • Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 2007;73(12):2020–2026. doi:10.1016/j.bcp.2007.03.01217433262
  • Filppula AM, Laitila J, Neuvonen PJ, Backman JT. Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012;165(8):2787–2798. doi:10.1111/j.1476-5381.2011.01732.x22014153