874
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections

, &
Pages 603-611 | Published online: 20 Mar 2019

References

  • Reed D, Kemmerly SA. Infection control and prevention: a review of hospital-acquired infections and the economic implications. Ochsner J. Epub ahead of print 2009. doi:10.1043/1524-5012-9.1.27
  • Lobdell KW, Stamou S, Sanchez JA. Hospital-acquired infections. Surg Clin North Am. 2012;92(1):65–77. doi:10.1016/j.suc.2011.11.00322269261
  • Lin WH, Wang MC, Tseng CC. et al. Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection. Epub ahead of print 2010. doi:10.1007/s15010-010-0049-5
  • Ranjbar R, Memariani H, Sorouri R. et al. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CA-UTI). Microb Pathog. Epub ahead of print 2016. doi:10.1016/j.micpath.2016.10.002
  • Cristina ML, Sartini M, Ottria G, et al. Epidemiology and biomolecular characterization of carbapenem-resistant Klebsiella pneumoniae in an Italian hospital. J Prev Med Hyg. 2016;57(3):E149.
  • Highsmith AK, Jarvis WR. Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control. Epub ahead of print 1985. doi:10.1017/S0195941700062640
  • Lin CT, Wu CC, Chen YS, et al. Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology. 2011;157(2):419–429. doi:10.1099/mic.0.044065-021071493
  • Lawlor MS, O’Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun. Epub ahead of print 2007. doi:10.1128/IAI.00372-06
  • Shi W, Li K, Ji Y. et al. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin ompK36 loss and DHA-1 β-lactamase production. Brazilian J Microbiol. Epub ahead of print 2013. doi:10.1590/S1517-83822013000200015
  • Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. Epub ahead of print 2014. doi:10.1016/j.bbrc.2014.05.090
  • Liu Y, Liu C, Zheng W. et al. PCR detection of Klebsiella pneumoniae in infant formula based on 16S–23S internal transcribed spacer. Int J Food Microbiol. Epub ahead of print 2008. doi:10.1016/j.ijfoodmicro.2008.03.005
  • Wayne P. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S25, Clinical and Laboratory Standards Institute. 2015:240.
  • Wasfi R, Elkhatib WF, Ashour HM. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep. Epub ahead of print 2016. doi:10.1038/srep38929
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. Epub ahead of print 2013. doi:10.1128/CMR.00059-12
  • Lev AI, Astashkin EI, Kislichkina AA, et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health. 2018;112(3):142–151. doi:10.1080/20477724.2018.146094929708041
  • Akter J, Masudul Azad Chowdhury AM, Forkan MA. Study on prevalence and antibiotic resistance pattern of Klebsiella isolated from clinical samples in South East Region of Bangladesh. Am J Drug Discov Dev. Epub ahead of print 2014. doi:10.3923/ajdd.2014.73.79
  • Riaz S, Faisal M, Hasnain S. Prevalence and comparison of beta-lactamase producing Escherichia coli and Klebsiella spp. from clinical and environmental sources in Lahore, Pakistan. African J Microbiol Res. Epub ahead of print 2012. doi:10.5897/AJMR11.1457
  • Lina TT, Rahman SR, Gomes DJ. Multiple-antibiotic resistance mediated by plasmids and integrons in uropathogenic Escherichia coli and Klebsiella pneumoniae. Bangladesh J Microbiol. 2007;24(1):19–23. doi:10.3329/bjm.v24i1.1231
  • Sarathbabu DR, Ramani DTV, Rao DKB, et al. Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from sputum, urine and pus samples. J Pharm Biol Sci. 2016;11;5(29):1470-1475.
  • Heidary M, Nasiri MJ, Dabiri H. Prevalence of drug-resistant Klebsiella pneumoniae in Iran : a review article. Iran J Public Heal. 2018;47(3):317–326.
  • El Bouamri MC, Arsalane L, El Kamouni Y. et al. Antimicrobial susceptibility of urinary Klebsiella pneumoniae and the emergence of carbapenem-resistant strains: a retrospective study from a university hospital in Morocco, North Africa. African J Urol. Epub ahead of print 2015. doi:10.1016/j.afju.2014.10.004
  • Chaudhary P, Bhandari D, Thapa K, et al. Prevalence of extended spectrum beta-lactamase producing Klebsiella Pneumoniae isolated from urinary tract infected patients. J Nepal Health Res Counc. 2004; 1;22(2):87.
  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. Epub ahead of print 2016. doi:10.1128/MMBR.00078-15
  • Lin WP, Wang JT, Chang SC. et al. The antimicrobial susceptibility of Klebsiella pneumoniae from community settings in Taiwan, a trend analysis. Sci Rep. Epub ahead of print 2016. doi:10.1038/srep36280
  • Chander A, Shrestha CD. Prevalence of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res Notes. Epub ahead of print 2013. doi:10.1186/1756-0500-6-487
  • Osthoff M, McGuinness SL, Wagen AZ. et al. Urinary tract infections due to extended-spectrum beta-lactamase-producing Gram-negative bacteria: identification of risk factors and outcome predictors in an Australian tertiary referral hospital. Int J Infect Dis. Epub ahead of print 2015. doi:10.1016/j.ijid.2015.03.006
  • Zhang J, Zhou K, Zheng B. et al. High prevalence of ESBL-producing Klebsiella pneumoniae causing community-onset infections in China. Front Microbiol. Epub ahead of print 2016. doi:10.3389/fmicb.2016.01830
  • Hasan Ejaz H, ul-Haq K, Zafa A, et al. Urinary tract infections caused by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae. African J Biotechnol. 2011;10(73):16661–16666. doi:10.5897/AJB11.2449
  • Mehrgan H, Rahbar M. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. Int J Antimicrob Agents. 2008;31(2):147–151. doi:10.1016/j.ijantimi-cag.2007.09.00818060745
  • Babypadmini S, Appalaraju B. Extended spectrum -lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae - prevalence and susceptibility pattern in a tertiary care hospital. Indian J Med Microbiol. 2004;22(3):172–174.17642726
  • Aminzadeh Z, Sadat Kashi M, Sha’bani M. Bacteriuria by extended-spectrum Beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: isolates in a governmental hospital in South of Tehran, Iran. Iran J Kidney Dis. 2008;2(4):197–200.19377237
  • Al-Zahrani A, Akhtar N. Susceptibility patterns of extended spectrum ß-Lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolated in a teaching hospital. Pakistan J Med Res. 2004 Available from: http://www.pmrc.org.pk/PJMR44_2/susceptibilitypatternsofextendedspectrum%DF-lactamase(esbl)-producingescherichiacoliandklebsiellapneumoniaeisolatedinateachinghospital.pdf. Accessed 2005.
  • Mekki AH, Hassan AN, Elsayed DEM. Extended spectrum beta lactamases among multi drug resistant Escherichia coli and Klebsiella species causing urinary tract infections in Khartoum. J Bacteriol Res. 2010;2:18–21.
  • Seibert G, Hörner R, Meneghetti BH, et al. Nosocomial infections by Klebsiella pneumoniae carbapenemase producing enterobacteria in a teaching hospital. Einstein (Sao Paulo). 2014;12(3):282–286. doi:10.1590/s1679-45082014ao313125295446
  • Jian-li W, Yuan-yuan S, Shou-yu G. et al. Serotype and virulence genes of Klebsiella pneumoniae isolated from mink and its pathogenesis in mice and mink. Sci Rep. Epub ahead of print 2017. doi:10.1038/s41598-017-17681-8
  • Turton JF, Payne Z, Coward A. et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-st23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J Med Microbiol. Epub ahead of print 2018. doi:10.1099/jmm.0.000653
  • Compain F, Babosan A, Brisse S, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol. 2014;52(12):4377–4380. doi:10.1128/JCM.00749-1425275000
  • Souza Lopes AC, Rodrigues JF, Cabral AB. et al. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections. Microb Pathog. Epub ahead of print 2016. doi:10.1016/j.micpath.2016.04.018
  • Schubert S, Cuenca S, Fischer D. et al. High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis. Epub ahead of print 2000. doi:10.1086/315831
  • Autenrieth I, Hantke K, Heesemann J. Immunosuppression of the host and delivery of iron to the pathogen: a possible dual role of siderophores in the pathogenesis of microbial infections? Med Microbiol Immunol. Epub ahead of print 1991. doi:10.1007/BF0206117
  • Carniel E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. Epub ahead of print 2001. doi:10.1016/S1286-4579(01)01412-5
  • Turton JF, Baklan H, Siu LK. et al. Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes. FEMS Microbiol Lett. Epub ahead of print 2008. doi:10.1111/j.1574-6968.2008.01208.x
  • Feizabadi MM, Raji N, Delfani S. Identification of Klebsiella pneumoniae K1 and K2 capsular types by PCR and Quellung test. Jundishapur J Microbiol. Epub ahead of print 2013. doi:10.5812/jjm.7585
  • Ikeda M, Mizoguchi M, Oshida Y, et al. Clinical and microbiological characteristics and occurrence of Klebsiella pneumoniae infection in Japan. Int J Gen Med. 2018;11:293.29317845
  • Jenney AW, Clements A, Farn JL. et al. Seroepidemiology of Klebsiella pneumoniae in an Australian Tertiary Hospital and its implications for vaccine development. J Clin Microbiol. Epub ahead of print 2006. doi:10.1128/JCM.44.1.102-107.2006
  • Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. Epub ahead of print 2006. doi:10.1128/CMR.19.2.382-402.2006
  • Chen JH, Siu LK, Fung CP. et al. Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother. Epub ahead of print 2010. doi:10.1093/jac/dkq056
  • Padilla E, Llobet E, Doménech-Sánchez A. et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. Epub ahead of print 2010. doi:10.1128/AAC.00715-09
  • Tsai YK, Fung CP, Lin JC. et al. Klebsiella pneumoniae Outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother. Epub ahead of print 2011. doi:10.1128/AAC.01275-10