127
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China

, , , , , , , , & show all
Pages 2269-2275 | Published online: 24 Jul 2019

References

  • Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa110878922670902
  • World Health Organization (WHO). Global Tuberculosis Report 2018. Geneva: WHO; 2018.
  • Lehmann J. Para-aminosalicylic acid in the treatment of tuberculosis. Lancet. 1946;247(6384):15–16. doi:10.1016/S0140-6736(46)91185-3
  • Lehmann J. Twenty years afterward historical notes on the discovery of the antituberculosis effect of para-aminosalicylic acid (PAS) and the first clinical trials. Am Rev Respir Dis. 1964;90:953–956. doi:10.1164/arrd.1964.90.6.95314233801
  • Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018;73(5):1138–1151. doi:10.1093/jac/dkx50629360989
  • Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science. 2013;339(6115):88–91. doi:10.1126/science.122898023118010
  • Zheng J, Rubin EJ, Bifani P, et al. para-aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem. 2013;288(32):23447–23456. doi:10.1074/jbc.M113.47579823779105
  • Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol. 2004;53(1):275–282. doi:10.1111/j.1365-2958.2004.04120.x15225321
  • Zhao F, Wang XD, Erber LN, et al. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(3):1479–1487. doi:10.1128/AAC.01775-1324366731
  • Fivian-Hughes AS, Houghton J, Davis EO. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology. 2012;158(Pt 2):308–318. doi:10.1099/mic.0.053983-022034487
  • Zhang D, An J, Wang J, et al. Molecular typing and drug susceptibility of Mycobacterium tuberculosis isolates from Chongqing municipality, China. Infect Genet Evol. 2013;13:310–316. doi:10.1016/j.meegid.2012.10.00823183314
  • Pang Y, Dong H, Tan Y, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep. 2016;6:25330. doi:10.1038/srep2533027149911
  • World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. Policy Guidance on Drug-Susceptibility Testing (DST) of Second-Line Antituberculosis Drugs. Geneva: World Health Organization; 2008.
  • Larkin MA, Blackshields G, Brown NP, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. doi:10.1093/bioinformatics/btm40417846036
  • Pang Y, Zhou Y, Zhao B, et al. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976. doi:10.1371/journal.pone.003297622412962
  • Tan Y, Su B, Zheng H, Song Y, Wang Y, Pang Y. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in Southern China. Front Microbiol. 2017;8:2358. doi:10.3389/fmicb.2017.0235829250048
  • Pang Y, Zhu D, Zheng H, et al. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis. 2017;17(1):711. doi:10.1186/s12879-017-2761-629110640
  • Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother. 2015;59(2):1320–1324. doi:10.1128/AAC.03695-1425421465
  • Cheng VW, Leung KS, Kwok JS, et al. Phylogenetic and structural significance of dihydrofolate synthase (folc) mutations in drug-resistant Mycobacterium tuberculosis. Microb Drug Resist. 2016;22(7):545–551. doi:10.1089/mdr.2015.019327082669
  • Mathieu M, Debousker G, Vincent S, Viviani F, Bamas-Jacques N, Mikol V. Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy. J Biol Chem. 2005;280(19):18916–18922. doi:10.1074/jbc.M41379920015705579
  • Mathys V, Wintjens R, Lefevre P, et al. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2009;53(5):2100–2109. doi:10.1128/AAC.01197-0819237648