219
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Prevalence and molecular epidemiology characteristics of carbapenem-resistant Escherichia coli in Heilongjiang Province, China

, , , , , , & show all
Pages 2505-2518 | Published online: 12 Aug 2019

References

  • Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013;31(3):177–184. doi:10.1016/j.tibtech.2012.12.00623333434
  • Luo Y, Yang F, Mathieu J, Mao D, Wang Q, Alvarez P. Proliferation of multidrug-resistant New Delhi Metallo-β-lactamase genes in municipal wastewater treatment plants in northern China. Environ Sci Technol Lett. 2014;1(1):26–30. doi:10.1021/ez400152e
  • Bogaard AE, Van Den, Stobberingh EE. Epidemiology of resistance to antibiotics links between animals and humans. Int J Antimicrob Agents. 2000;14(4):327–335.10794955
  • Sáenz Y, Zarazaga M, As L B, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents. 2001;18(4):353–358. doi:10.1016/S0924-8579(01)00422-811691568
  • Bi R, Kong Z, Qian H, et al. High Prevalence of blaNDM variants among carbapenem-resistant Escherichia coli in northern Jiangsu Province, China. Front Microbiol. 2018;9:2704. doi:10.3389/fmicb.2018.0270430483231
  • Livermore DM. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64 Suppl 1:i29–i36. doi:10.1093/jac/dkp25519675016
  • Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36 Suppl 3:S8–S14. doi:10.1016/S0924-8579(10)70004-2
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-0919770275
  • Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol. 2013;62(Pt 4):499–513. doi:10.1099/jmm.0.052555-023329317
  • Chen Y, Zhou Z, Jiang Y, Yunsong Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother. 2011;66(6):1255–1259. doi:10.1093/jac/dkr08221398294
  • Jing Y, Tan K, Rong Z, et al. Nosocomial outbreak of KPC-2- and NDM-1-producing Klebsiella pneumoniae in a neonatal ward: a retrospective study. BMC Infect Dis. 2016;16(1):563. doi:10.1186/s12879-016-1987-z27733128
  • Zong Z, Zhang X. blaNDM-1-carrying Acinetobacter johnsonii detected in hospital sewage. J Antimicrob Chemother. 2013;68(5):1007–1010. doi:10.1093/jac/dks50523288403
  • Hu H, Hu Y, Pan Y, et al. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrob Agents Chemother. 2012;56(4):1698–1702. doi:10.1128/AAC.06199-1122290961
  • Ellington MJ, James K, Livermore DM, Neil W. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother. 2007;59(2):321–322. doi:10.1093/jac/dkl48117185300
  • Favier C, Arlet G, Dallenne C, Costa AD, Decre D, Curie M. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–495. doi:10.1093/jac/dkp49820071363
  • Hu X, Xu B, Yang Y, et al. A high throughput multiplex PCR assay for simultaneous detection of seven aminoglycoside-resistance genes in Enterobacteriaceae. BMC Microbiol. 2013;13(1):58. doi:10.1186/1471-2180-13-5823497180
  • Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol. 2013;62(12):1823–1827. doi:10.1099/jmm.0.064428-024000223
  • Gautom RK. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157: H7 and other gram-negative organisms in 1 day. J Clin Microbiol. 1997;35(11):2977–2980.9350772
  • Tartof SY, Solberg OD, Manges AR, Riley LW. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol. 2005;43(12):5860–5864. doi:10.1128/JCM.43.12.5860-5864.200516333067
  • Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555–4558. doi:10.1128/aem.66.10.4555-4558.200011010916
  • Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–228. doi:10.1016/j.mimet.2005.03.01815935499
  • Johnson TJ, Bielak EM, Fortini D, et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid. 2012;68(1):43–50. doi:10.1016/j.plasmid.2012.03.00122470007
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/S1473-3099(15)00424-726603172
  • He T, Wei R, Zhang L, et al. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. Vet Microbiol. 2017;207:153–158. doi:10.1016/j.vetmic.2017.06.01028757017
  • Qin S, Fu Y, Zhang Q, et al. High incidence and endemic spread of NDM-1-positive Enterobacteriaceae in Henan Province, China. Antimicrob Agents Chemother. 2014;58(8):4275–4282. doi:10.1128/AAC.02813-1324777095
  • Liu JH, Wei SY, Ma JY, et al. Detection and characterisation of CTX-M and CMY-2 β-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. Int J Antimicrob Agents. 2007;29(5):576–581. doi:10.1016/j.ijantimicag.2006.12.01517314033
  • Smith MG, Jordan D, Chapman TA, et al. Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet Microbiol. 2010;145(3):299–307. doi:10.1016/j.vetmic.2010.04.00420688440
  • Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ. 2006;366(2):772–783. doi:10.1016/j.scitotenv.2005.10.00716313947
  • Michael I, Rizzo L, Mcardell CS, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 2013;47(3):957–995. doi:10.1016/j.watres.2012.11.02723266388
  • Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153–163. doi:10.1016/S1473-3099(16)30257-227866944
  • Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from China CRE Network. Antimicrob Agents Chemother. 2018;62(2):AAC.01882–17.
  • Partridge SR, Iredell JR. Genetic contexts of blaNDM-1. Antimicrob Agents Chemother. 2012;56(11):6065–6067. doi:10.1128/AAC.00117-1223074228
  • Laurent D, Patrice N, Laurent P. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56(4):1693–1697. doi:10.1128/AAC.05583-1122290943
  • Lascols C, Hackel M, Marshall SH, et al. Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: data from the SMART study. J Antimicrob Chemother. 2011;66(9):1992–1997. doi:10.1093/jac/dkr24021676902
  • Gisele P, Schreckenberger PC, Pitout JDD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob Agents Chemother. 2011;55(6):2986–2988. doi:10.1128/AAC.01763-1021444703
  • Giske CG, Inga FD, Chowdhury Mehedi H, et al. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of blaNDM-1 in India, Sweden, and the United Kingdom. Antimicrob Agents Chemother. 2012;56(5):2735–2738. doi:10.1128/AAC.06142-1122354295
  • Yang P, Xie Y, Feng P, Zong Z. blaNDM-5 carried by an IncX3 plasmid in Escherichia coli sequence type 167. Antimicrob Agents Chemother. 2014;58(12):7548–7552. doi:10.1128/AAC.03911-1425246393
  • Johnson TJ, Lang KS. IncA/C plasmids: an emerging threat to human and animal health? Mob Genet Elements. 2012;2(1):55–58. doi:10.4161/mge.1962622754754
  • Ho PL, Li Z, Lo W, et al. Identification and characterization of a novel incompatibility group X3 plasmid carrying blaNDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Microbes Infect. 2012;1(11):e39. doi:10.1038/emi.2012.3326038408
  • Göttig S, Riedel-Christ S, Saleh A, Kempf VA, Hamprecht A. Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents. 2016;47(6):430–435. doi:10.1016/j.ijantimicag.2016.02.01927179815