191
Views
17
CrossRef citations to date
0
Altmetric
Review

Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases

, &
Pages 2589-2611 | Published online: 22 Aug 2019

References

  • Engwerda CR, Kaye PM. Organ-specific immune responses associated with infectious disease. Immunol Today. 2000;21:73–78.10652464
  • Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–353. doi:10.1038/ni.312325789684
  • Villani A-C, Sarkizova S, Hacohen N. Systems immunology: learning the rules of the immune system. Annu Rev Immunol. 2018;36:813–842. doi:10.1146/annurev-immunol-042617-05303529677477
  • Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017;18:725–732.28632713
  • Sattler S. The role of the immune system beyond the fight against infection. Adv Exp Med Biol. 2017;1003:3–14. doi:10.1007/978-3-319-57613-8_128667551
  • Quaresma JAS, Sotto MN, Balato A. Inflammatory and immune-mediated cutaneous diseases. Mediators Inflamm. 2017;2017:1–2. doi:10.1155/2017/6793968
  • Vijayan A, Rumbo M, Carnoy C, Sirard J-C. Compartmentalized antimicrobial defenses in response to flagellin. Trends Microbiol. 2018;26:423–435. doi:10.1016/j.tim.2017.10.00829173868
  • Rodríguez-Cortés A, Carrillo E, Martorell S, et al. Compartmentalized immune response in leishmaniasis: changing patterns throughout the disease. PLoS One. 2016;11:e0155224. doi:10.1371/journal.pone.015522427171409
  • Quiding-Järbrink M, Granström G, Nordström I, Holmgren J, Czerkinsky C. Induction of compartmentalized B-cell responses in human tonsils. Infect Immun. 1995;63:853–857.7868256
  • Spengler U, Lechmann M, Irrgang B, Dumoulin FL, Sauerbruch T. Immune responses in hepatitis C virus infection. J Hepatol. 1996;24:20–25.8836885
  • Newman LS, Bobka C, Schumacher B, et al. Compartmentalized immune response reflects clinical severity of beryllium disease. Am J Respir Crit Care Med. 1994;150:135–142. doi:10.1164/ajrccm.150.1.80257398025739
  • McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142:24–31. doi:10.1111/imm.1223124329495
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–737. doi:10.1038/nri307321997792
  • Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011;11:788–798. doi:10.1038/nri308722025056
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35. doi:10.1038/nri97812511873
  • Quaresma JA, Barros VL, Pagliari C, et al. Hepatocyte lesions and cellular immune response in yellow fever infection. Trans R Soc Trop Med Hyg. 2007;101:161–168. doi:10.1016/j.trstmh.2006.02.01916872652
  • Zannetti C, Roblot G, Charrier E, et al. Characterization of the inflammasome in human Kupffer cells in response to synthetic agonists and pathogens. J Immunol. 2016;197:356–367. doi:10.4049/jimmunol.150230127226092
  • Lee JC, Lee SS, Schlesinger KJ, Richter GW. Detection of protein subunits of ferritin in situ in cells by immunofluorescence. Am J Pathol. 1974;75:473–487.4134966
  • Yamasaki K, Eeden SFV. Lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int J Mol Sci. 2018;19:E582. doi:10.3390/ijms1902058229462886
  • Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223:383–396. doi:10.1016/j.imbio.2017.11.00129146235
  • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–761. doi:10.1038/nri308822025054
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–774. doi:10.1038/nri307021984070
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–455. doi:10.1038/nature1203423619691
  • London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34. doi:10.3389/fncel.2013.0003423596391
  • Chavez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front Immunol. 2015;6:263–278. doi:10.3389/fimmu.2015.0026326074923
  • Liu Y-H, Ding Y, Gao -C-C, Li L-S, Wang Y-X, Xu J-D. Functional macrophages and gastrointestinal disorders. World J Gastroenterol. 2018;24:1181–1195. doi:10.3748/wjg.v24.i11.118129568199
  • Joeris T, Müller-Luda K, Agace WW, Mowat AM. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 2017;10:845–864. doi:10.1038/mi.2017.2228378807
  • Grainger JR, Konkel JE, Zangerle-Murray T, Shaw TN. Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Arch. 2017;469:527–539. doi:10.1007/s00424-017-1958-228283748
  • Ganz T. Macrophages and iron metabolism. Microbiol Spectr. 2016;4:5.
  • Steiniger BS. Human spleen microanatomy: why mice do not suffice. Immunology. 2015;145:334–346. doi:10.1111/imm.1246925827019
  • Mowat AM, Scott CL, Bain CC. Barrier-tissue macrophages: functional adaptation to environmental challenges. Nat Med. 2017;23:1258–1270. doi:10.1038/nm.443029117177
  • Yanez DA, Lacher RK, Vidyarthi A, Colegio OR. The role of macrophages in skin homeostasis. Pflugers Arch. 2017;469:455–463. doi:10.1007/s00424-017-1953-728233123
  • Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 2017;61:3–11. doi:10.1016/j.semcdb.2016.08.00627521521
  • Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19:1801. doi:10.3390/ijms19061801
  • Sjoelund V, Smelkinson M, Nita-lazar A. Phosphoproteome profiling of the macrophage response to different Toll-like receptor ligands identifies differences in global phosphorylation dynamics. J Proteome Res. 2014;13:5185–5197. doi:10.1021/pr500246624941444
  • Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271–284. doi:10.1080/15548627.2015.100978725650776
  • Weirather J, Hofmann UDW, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115:55–67. doi:10.1161/CIRCRESAHA.115.30389524786398
  • Eligini S, Crisci M, Bono E, et al. Human monocyte-derived macrophages spontaneously differentiated in vitro show distinct phenotypes. J Cell Physiol. 2013;228:1464–1472. doi:10.1002/jcp.2439023255209
  • Schmall A, Al-Tamari HM, Herold S, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015;191:437–447. doi:10.1164/rccm.201406-1137OC25536148
  • Makita N, Hizukuri Y, Yamashiro K, Murakawa M, Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015;27:131–141. doi:10.1093/intimm/dxv00325267883
  • Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One. 2014;9:e94188. doi:10.1371/journal.pone.009418824736635
  • Said EA, Al-Reesi I, Al-Riyami M, et al. Increased CD86 but not CD80 and PD-L1 expression on liver CD68+ cells during chronic HBV infection. PLoS One. 2016;11:e0158265. doi:10.1371/journal.pone.015826527348308
  • Kumar P, Tyagi R, Das G, Bhaskar S. Mycobacterium indicus pranii and mycobacterium bovis BCG lead to differential macrophage activation in toll-like receptor-dependent manner. Immunology. 2014;143:258–268. doi:10.1111/imm.1231924766519
  • Zhu Y, Zhang L, Lu Q, et al. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy. Int J Mol Med. 2017;40:281–292. doi:10.3892/ijmm.2017.302228627621
  • Klar AS, Michalak-Mićka K, Biedermann T, Simmen-Meuli C, Reichmann E, Meuli M. Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo. Pediatr Surg Int. 2018;34:129–135. doi:10.1007/s00383-017-4179-z29124400
  • Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in cryptococcus neoformans infection. MBio. 2013;4:e00264–e00313. doi:10.1128/mBio.00264-1323781069
  • Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–634. doi:10.1038/nri351523928573
  • Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262(1):153–166. doi:10.1111/imr.1221825319333
  • De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circ J. 2014;78:1775–1781. doi:10.1253/circj.CJ-14-062124998279
  • Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015:816460. doi:10.1155/2015/12538026089604
  • Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010;20:701–712. doi:10.1038/cr.2010.5220386569
  • Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 2013;36:921–931. doi:10.1007/s10753-012-9579-623504259
  • Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010;107:737–746. doi:10.1161/CIRCRESAHA.109.21571520651288
  • Kalish S, Lyamina S, Manukhina E, Malyshev Y, Raetskaya A, Malyshev I. M3 macrophages stop division of tumor cells in vitro and extend survival of mice with Ehrlich ascites carcinoma. Med Sci Monit Basic Res. 2017;23:8–19. doi:10.12659/MSMBR.90228528123171
  • Zizzo G, Cohen PL. IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J Immunol. 2013;190:5237–5246. doi:10.4049/jimmunol.120301723596310
  • Erbel C, Wolf A, Lasitschka F, et al. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int J Cardiol. 2015;186:219–225. doi:10.1016/j.ijcard.2015.03.15125828120
  • Riquelme P, Tomiuk S, Kammler A, et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther. 2013;21:409–422. doi:10.1038/mt.2012.16822929659
  • Riquelme P, Haarer J, Kammler A, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi:10.1038/s41467-018-05167-830030423
  • Riquelme P, Amodio G, Macedo C, et al. DHRS9 is a stable marker of human regulatory macrophages. Transplantation. 2017;101:2731–2738. doi:10.1097/TP.000000000000158828594751
  • Hristodorov D, Mladenov R, Huhn M, Barth S, Thepen T. Macrophage-targeted therapy: CD64-based immunotoxins for treatment of chronic inflammatory diseases. Toxins Basel. 2012;4:676–694. doi:10.3390/toxins409067623105975
  • Bories GFP, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Lett. 2017;591:3042–3060. doi:10.1002/1873-3468.1278628796886
  • Marques L, Negre-Salvayre A, Costa L, Canonne-Hergaux F. Iron gene expression profile in atherogenic Mox macrophages. Biochim Biophys Acta - Mol Basis Dis. 2016;1862:1137–1146. doi:10.1016/j.bbadis.2016.03.004
  • Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Biomed Res Int. 2015;2015:1–22. doi:10.1155/2015/341308
  • Medbury HJ, Williams H, Fletcher JP. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin Transl Med. 2014;3:63. doi:10.1186/s40169-014-0042-125635207
  • Butcher MJ, Galkina EV. Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol. 2012;3:1–13. doi:10.3389/fphys.2012.0004422275902
  • Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther. 2015;37:914–923. doi:10.1016/j.clinthera.2015.01.00825704108
  • Hoeksema MA, Stöger JL, de Winther MP. Molecular pathways regulating macrophage polarization: implications for atherosclerosis. Curr Atheroscler Rep. 2012;14:254–263. doi:10.1007/s11883-012-0240-522407286
  • Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1. doi:10.3389/fphys.2012.0000122275902
  • Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:1–16. doi:10.3389/fimmu.2014.0012724474949
  • de la Paz Sánchez-Martínez M, Blanco-Favela F, Mora-Ruiz MD, Chávez-Rueda AK, Bernabe-García M, Chávez-Sánchez L. IL-17-differentiated macrophages secrete pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids Health Dis. 2017;16:196. doi:10.1186/s12944-017-0565-829017604
  • Das A, Yang C-S, Arifuzzaman S, et al. High-resolution mapping and dynamics of the transcriptome, transcription factors, and transcription co-factor networks in classically and alternatively activated macrophages. Front Immunol. 2018;9:22. doi:10.3389/fimmu.2018.0002229403501
  • Ramsey SA, Vengrenyuk Y, Menon P, et al. Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the wnt signaling pathway. PLoS Genet. 2014;10:e1004828. doi:10.1371/journal.pgen.100454125474352
  • Walter W, Alonso-Herranz L, Trappetti V, et al. Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep. 2018;23:622–636. doi:10.1016/j.celrep.2018.03.02929642017
  • Karunakaran D, Rayner KJ. Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta - Mol Cell Biol Lipids. 2016;1861:2087–2093. doi:10.1016/j.bbalip.2016.02.006
  • Jablonski KA, Amici SA, Webb LM, et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One. 2015;10:e0145342. doi:10.1371/journal.pone.014534226699615
  • Biagioli M, Carino A, Cipriani S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol. 2017;199:718–733. doi:10.4049/jimmunol.170018328607110
  • Novoselov VV, Sazonova MA, Ivanova EA, Orekhov AN. Study of the activated macrophage transcriptome. Exp Mol Pathol. 2015;99:575–580. doi:10.1016/j.yexmp.2015.09.01426439118
  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi:10.12703/P24669294
  • Lisi L, Ciotti GM, Braun D, et al. Expression of iNOS, CD163 and ARG1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett. 2017;645:106–112. doi:10.1016/j.neulet.2017.02.07628259657
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. doi:10.1016/j.immuni.2014.06.00825035950
  • Beyer M, Mallmann MR, Xue J, et al. High-resolution transcriptome of human macrophages. PLoS One. 2012;7:e45466. doi:10.1371/journal.pone.004546623029029
  • Genard G, Lucas S, Michiels C. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol. 2017;8:828. doi:10.3389/fimmu.2017.0082828769933
  • Kumarasamy S, Solanki S, Atolagbe OT, Joe B, Birnbaumer L, Vazquez G. Deep transcriptomic profiling of M1 macrophages lacking Trpc3. Sci Rep. 2017;7:3–8. doi:10.1038/srep3986728127052
  • Ren R, Tyryshkin K, Graham CH, Koti M, Robert Siemens D. Comprehensive immune transcriptomic analysis in bladder cancer reveals subtype specific immune gene expression patterns of prognostic relevance. Oncotarget. 2017;8:70982–71001. doi:10.18632/oncotarget.v8i4129050337
  • Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223:101–111. doi:10.1016/j.imbio.2017.10.00529032836
  • Zhang N, Bao Y-J, Tong AH-Y, et al. Whole transcriptome analysis reveals differential gene expression profile reflecting macrophage polarization in response to influenza A H5N1 virus infection. BMC Med Genomics. 2018;11:20. doi:10.1186/s12920-018-0335-029475453
  • Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015:16–18. doi:10.1155/2015/125380
  • Tang L, Zhang H, Wang C, Li H, Zhang Q, Bai J. M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway. Shock. 2017;48:119–129. doi:10.1097/SHK.000000000000082027941591
  • Derlindati E, Cas AD, Montanini B, et al. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PLoS One. 2015;10:e0119751. doi:10.1371/journal.pone.011975125799240
  • Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10stimulated M2c macrophages by next-generation sequencing. Immunobiology. 2017;222:847–856. doi:10.1016/j.imbio.2016.10.00928318799
  • Vinchi F, Muckenthaler MU, Da Silva MC, Balla G, Balla J, Jeney V. Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol. 2014;5:94. doi:10.3389/fphar.2014.0009424847266
  • Chistiakov DA, Bobryshev YV, Orekhov AN. Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med. 2015;19:1163–1173. doi:10.1111/jcmm.1265825973901
  • Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. 2010;184:4810–4818. doi:10.4049/jimmunol.090201620335529
  • Rojas J, Salazar J, Martínez MS, et al. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica Cairo. 2015;2015:1–17. doi:10.1155/2015/851252
  • Metchnikoff E. Untersuchungen ueber die mesodermalen Phagocyten einiger Wirbeltiere. Biologisches Centralblatt. 1883;3:560–565.
  • Liu Y-C, Zou X-B, Chai Y-F, Yao Y-M. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–529. doi:10.7150/ijbs.887924910531
  • Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966;153:80–82. doi:10.1126/science.153.3731.805938421
  • Nathan CF, Karnovsky ML, David JR. Alterations of macrophage functions by mediators from lymphocytes. J Exp Med. 1971;133:1356–1376. doi:10.1084/jem.133.6.13565576335
  • Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–689. doi:10.1084/jem.158.3.6706411853
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–2357.2419430
  • Stein M. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176:287–292. doi:10.1084/jem.176.1.2871613462
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 Paradigm. J Immunol. 2000;164:6166–6173. doi:10.4049/jimmunol.164.12.616610843666
  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555. doi:10.1016/S1471-4906(02)02302-512401408
  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–686. doi:10.1016/j.it.2004.09.01515530839
  • Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76:509–513. doi:10.1189/jlb.050427215218057
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–795. doi:10.1172/JCI5731322378047
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–896. doi:10.1038/ni.193720856220
  • Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–237. doi:10.1016/j.coi.2010.01.00920144856
  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–449. doi:10.1016/j.immuni.2016.02.02426982352
  • Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017;79:541–566. doi:10.1146/annurev-physiol-022516-03433927813830
  • Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. 2017;15:1–18. doi:10.1186/s12915-017-0392-428100223
  • Raggi F, Pelassa S, Pierobon D, et al. Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol. 2017;8:1–18. doi:10.3389/fimmu.2017.0109728149297
  • Bertani FR, Mozetic P, Fioramonti M, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep. 2017;7:1–9. doi:10.1038/s41598-017-08121-828127051
  • Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–462. doi:10.1016/j.immuni.2016.02.01526982353
  • Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93:875–881. doi:10.1189/jlb.101251223505314
  • Mills CD. Anatomy of a discovery: M1 and M2 macrophages. Front Immunol. 2015;6:1–12. doi:10.3389/fimmu.2015.0021225657648
  • Da Silva TA, Zorzetto-Fernandes ALV, Cecílio NT, Sardinha-Silva A, Fernandes FF, Roque-Barreira MC. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Sci Rep. 2017;7:1–14. doi:10.1038/s41598-017-07397-028127051
  • Baumann CL, Aspalter IM, Sharif O, et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med. 2010;207:2689–2701. doi:10.1084/jem.2010111121078886
  • Rajaiah R, Perkins DJ, Ireland DDC, Vogel SN. CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc Natl Acad Sci. 2015;112:8391–8396. doi:10.1073/pnas.142498011226106158
  • Gallo P, Gonçalves R, Mosser DM. The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol Lett. 2011;133:301–314.
  • Linehan SA, Martinez-Pomares L, Gordon S. Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Adv Exp Med Biol. 2000;479:1–14. doi:10.1007/0-306-46831-X_110897405
  • Bohlson SS, O’Conner SD, Hulsebus HJ, Ho MM, Fraser DA. Complement, C1Q, and C1q-related molecules regulate macrophage polarization. Front Immunol. 2014;5:1–7. doi:10.3389/fimmu.2014.0040224474949
  • Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional regulation of macrophages polarization by microRNAs. Front Immunol. 2018;9:1–12.29403488
  • Roy S, Schmeier S, Arner E, et al. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics. Nucleic Acids Res. 2015;43:6969–6982. doi:10.1093/nar/gkv64626117544
  • Lyroni K, Patsalos A, Daskalaki MG, et al. Epigenetic and transcriptional regulation of IRAK-M expression in macrophages. J Immunol. 2017;198:1297–1307. doi:10.4049/jimmunol.160000928011933
  • Salim T, Sershen CL, May EE. Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One. 2016;11:e0153289. doi:10.1371/journal.pone.015328927276061
  • Wesemann DR, Benveniste EN. STAT-1α and IFN-γ as modulators of TNF-α signaling in macrophages: regulation and functional implications of the TNF receptor 1: STAT-1α complex. J Immunol. 2003;171:5313–5319. doi:10.4049/jimmunol.171.10.531314607933
  • Rauch I, Müller M, Decker T. The regulation of inflammation by interferons and their STATs. Jak-Stat. 2013;2:e23820. doi:10.4161/jkst.2382024058799
  • Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016;100:481–489. doi:10.1189/jlb.3RU0316-144R27354413
  • Hamilton TA, Zhao C, Pavicic PG, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 2014;5:1–7. doi:10.3389/fimmu.2014.0055424474949
  • Lombardo E, Alvarez-Barrientos A, Maroto B, Boscá L, Knaus UG. TLR4-mediated survival of macrophages is MyD88 dependent and requires TNF-α autocrine signalling. J Immunol. 2007;178:3731–3739. doi:10.4049/jimmunol.178.6.373117339471
  • Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274:10689–10692. doi:10.1074/jbc.274.16.1068910196138
  • He X, Qian Y, Li Z, et al. TLR4-upregulated IL-1β and IL-1RI promote alveolar macrophage pyroptosis and lung inflammation through an autocrine mechanism. Sci Rep. 2016;6:1–11.28442746
  • Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol. 2015;27:237–248. doi:10.1016/j.smim.2015.10.00326561250
  • Galván-Peña S, O’Neill LAJ. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:1–7.24474949
  • Erbel C, Tyka M, Helmes CM, et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo. Innate Immun. 2015;21:255–265. doi:10.1177/175342591452646124663337
  • Oksala NKJ, Seppälä I, Rahikainen R, et al. Synergistic expression of histone deacetylase 9 and matrix metalloproteinase 12 in M4 macrophages in advanced carotid plaques. Eur J Vasc Endovasc Surg. 2017;53:632–640. doi:10.1016/j.ejvs.2017.02.01428343758
  • Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33:1120–1126. doi:10.1161/ATVBAHA.112.30017323640492
  • Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117:7–18. doi:10.1160/TH16-08-059327683760
  • Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12:10–17. doi:10.1038/nrcardio.2014.17325367649
  • Taghavie-Moghadam PL, Butcher MJ, Galkina EV. The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Ann N Y Acad Sci. 2014;1319:19–37. doi:10.1111/nyas.2014.1319.issue-124628328
  • Getz GS, Reardon CA. Atherogenic lipids and macrophage subsets. Curr Opin Lipidol. 2015;26:357–361. doi:10.1097/MOL.000000000000021726218415
  • Taleb S. L’inflammation dans l’athérosclérose. Arch Cardiovasc Dis. 2016;109:708–715. doi:10.1016/j.acvd.2016.04.00227595467
  • Guler R, Parihar SP, Savvi S, et al. IL-4Rα-dependent alternative activation of macrophages is not decisive for mycobacterium tuberculosis pathology and bacterial burden in mice. PLoS One. 2015;10:1–14. doi:10.1371/journal.pone.0121070
  • Mandell MA, Beverley SM. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci. 2017;114:E801–E810. doi:10.1073/pnas.161926511428096392
  • Cuervo H, Pineda MA, Aoki MP, Gea S, Fresno M, Gironès N. Inducible nitric oxide synthase and arginase expression in heart tissue during acute Trypanosoma cruzi infection in mice: arginase I is expressed in infiltrating CD68+ macrophages. J Infect Dis. 2008;197:1772–1782. doi:10.1086/59046418473687
  • Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532. doi:10.3389/fimmu.2014.0053225386178
  • Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26:192–197. doi:10.1016/j.cellsig.2013.11.00424219909
  • Duque-Correa MA, Kühl AA, Rodriguez PC, et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A. 2014;111:E4024–32. doi:10.1073/pnas.140883911125201986
  • Muraille E, Leo O, Moser M. Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:1–12. doi:10.3389/fimmu.2014.0060324474949
  • Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89:557–563. doi:10.1189/jlb.071040921248152
  • de Sousa JR, de Sousa RPM, de Souza Aarão TL, Dias LB, Oliveira Carneiro FR, Simões Quaresma JA. Response of iNOS and its relationship with IL-22 and STAT3 in macrophage activity in the polar forms of leprosy. Acta Trop. 2017;171:74–79. doi:10.1016/j.actatropica.2017.03.01628327412
  • Pereira-Suárez AL, Alvarado-Navarro A, Barrietos-García JG, Estrada-Chávez C, Muñoz-Valle JF, Fafutis-Morris M. Differential expression of solute carrier family 11a member 1 and inducible nitric oxide synthase 2 in skin biopsies from leprosy patients. Indian J Dermatol Venereol Leprol. 2015;81:594–599. doi:10.4103/0378-6323.16834526515838
  • de Sousa JR, de Sousa RPM, de Souza Aarão TL, et al. In situ expression of M2 macrophage subpopulation in leprosy skin lesions. Acta Trop. 2016;157:108–114. doi:10.1016/j.actatropica.2016.01.00826827741
  • Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog. 2007;3:1887–1894. doi:10.1371/journal.ppat.0030186
  • Cunningham-Bussel A, Zhang T, Nathan CF. Nitrite produced by mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci. 2013;110:E4256–E4265. doi:10.1073/pnas.131689411024145454
  • Braverman J, Stanley SA. Nitric oxide modulates macrophage responses to mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB. J Immunol. 2017;199:1805–1816. doi:10.4049/jimmunol.170051528754681
  • Mattila JT, Ojo OO, Kepka-Lenhart D, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013;191:773–784. doi:10.4049/jimmunol.130011323749634
  • Osorio EY, Travi BL, Da Cruz AM, Saldarriaga OA, Medina AA, Melby PC. Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathog. 2014;10:11–14. doi:10.1371/journal.ppat.1004165
  • Muleme HM, Reguera RM, Berard A, et al. Infection with arginase-deficient leishmania major reveals a parasite number-dependent and cytokine-independent regulation of host cellular arginase activity and disease pathogenesis. J Immunol. 2009;183:8068–8076. doi:10.4049/jimmunol.090083819923451
  • Schleicher U, Paduch K, Debus A, et al. TNF-mediated restriction of arginase 1 expression in myeloid cells triggers type 2 NO synthase activity at the site of infection. Cell Rep. 2016;15:1062–1075. doi:10.1016/j.celrep.2016.04.00127117406
  • Bernard Q, Smith AA, Yang X, et al. Plasticity in early immune evasion strategies of a bacterial pathogen. Proc Natl Acad Sci U S A. 2018;115:E3788–E3797. doi:10.1073/pnas.171859511529610317
  • Ren Y, Khan FA, Pandupuspitasari NS, Zhang S. Immune evasion strategies of pathogens in macrophages: the potential for limiting pathogen transmission. Curr Issues Mol Biol. 2017;21:21–40.27033743
  • Yang C, Wang J, Zou L. Innate immune evasion strategies against cryptococcal meningitis caused byCryptococcus neoformans Exp Ther Med. 2017;14:5243–5250. doi:10.3892/etm.2017.522029285049
  • Flávia Nardy A, Freire-De-Lima CG, Morrot A. Immune evasion strategies of trypanosoma cruzi. J Immunol Res. 2015;2015:178947. doi:10.1155/2015/17894726240832
  • Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol. 2018;59:391–412. doi:10.1016/j.intimp.2018.03.00229730580
  • Fieber C, Janos M, Koestler T, et al. Innate immune response to streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One. 2015;10:1–20. doi:10.1371/journal.pone.0119727
  • Bordon Y. Innate immunity: TLR13, unlucky, but just for some. Nat Rev Immunol. 2012;12:618–619. doi:10.1038/nri3284
  • Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci. 2015;1356:1–21. doi:10.1111/nyas.1276325930993
  • Chandler CE, Ernst RK. lipids: powerful modifiers of the innate immune response. F1000Research. 2017;6:1334. doi:10.12688/f1000research.10493.2
  • Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13:460–469. doi:10.1016/j.molmed.2007.09.00218029230
  • Liu S, Jia H, Hou S, et al. Recombinant Mtb9.8 of mycobacterium bovis stimulates TNF-α and IL-1β secretion by RAW264.7 macrophages through activation of NF-κB pathway via TLR2. Sci Rep. 2018;8:1928. doi:10.1038/s41598-018-20433-x29386556
  • Sharma S, Sharma M, Roy S, Kumar P, Bose M. Mycobacterium tuberculosis induces high production of nitric oxide in coordination with production of tumour necrosis factor-α in patients with fresh active tuberculosis but not in MDR tuberculosis. Immunol Cell Biol. 2004;82:377–382. doi:10.1111/j.0818-9641.2004.01245.x15283847
  • Seghatoleslam A, Hemmati M, Ebadat S, Movahedi B, Mostafavi-Pour Z. Macrophage immune response suppression by recombinant mycobacterium tuberculosis antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 fusion proteins. Iran J Med Sci. 2016;41:296–304.27365551
  • Blanc L, Gilleron M, Prandi J, et al. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci. 2017;114:11205–11210. doi:10.1073/pnas.170784011428973928
  • Rahman MA, Sobia P, Gupta N, Van Kaer L, Das G. Mycobacterium tuberculosis subverts the TLR-2 - MyD88 pathway to facilitate its translocation into the cytosol. PLoS One. 2014;9:e0086886. doi:10.1371/journal.pone.0086886
  • Su H, Zhu S, Zhu L, et al. Recombinant lipoprotein Rv1016c derived from mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing. Front Cell Infect Microbiol. 2016;6:1–13. doi:10.3389/fcimb.2016.0014726870699
  • de Veer MJ, Curtis JM, Baldwin TM, et al. MyD88 is essential for clearance OF Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol. 2003;33:2822–2831. doi:10.1002/(ISSN)1521-414114515266
  • Srivastav S, Kar S, Chande AG, Mukhopadhyaya R, Das PK. Leishmania donovani exploits host deubiquitinating enzyme A20, a negative regulator of TLR signaling, to subvert host immune response. J Immunol. 2012;189:924–934. doi:10.4049/jimmunol.110284522685311
  • Srivastav S, Ball WB, Gupta P, Giri J, Ukil A, Das PK. Leishmania donovani prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling SOCSproteins. J Biol Chem. 2014;289:1092–1105. doi:10.1074/jbc.M113.49632324275663
  • Khouri R, Bafica A, Silva MDPP, et al. IFN-beta impairs superoxide-dependent parasite killing in human macrophages: evidence for a deleterious role of SOD1 in cutaneous leishmaniasis. J Immunol. 2009;182:2525–2531. doi:10.4049/jimmunol.080277519201909
  • Gravina HD, Antonelli L, Gazzinelli RT, Ropert C. Differential use of TLR2 and TLR9 in the regulation of immune responses during the infection with trypanosoma cruzi. PLoS One. 2013;8:e63100. doi:10.1371/journal.pone.006310023650544
  • Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the immune response by trypanosoma cruzi during acute infection. Front Immunol. 2016;6:1–15. doi:10.3389/fimmu.2015.00659
  • Welin A, Raffetseder J, Eklund D, Stendahl O, Lerm M. Importance of phagosomal functionality for growth restriction of mycobacterium tuberculosis in primary human macrophages. J Innate Immun. 2011;3:508–518. doi:10.1159/00032529721576918
  • Semini G, Aebischer T. Phagosome proteomics to study Leishmania’s intracellular niche in macrophages. Int J Med Microbiol. 2017; pii:S1438-4221(17)30332–6. doi:10.1016/j.ijmm.2017.09.003
  • Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe. 2008;3:399–407. doi:10.1016/j.chom.2008.05.00618541216
  • Lodge R, Diallo TO, Descoteaux A. Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cell Microbiol. 2006;8:1922–1931. doi:10.1111/cmi.2006.8.issue-1216848789
  • Osuna A, Gamarro F, Castanys S, Ruiz-Perez LM. Inhibition of lysosomal fusion by trypanosoma cruzi in peritoneal macrophages. Int J Parasitol. 1986;16:629–632. doi:10.1016/0020-7519(86)90031-73542866
  • Wilkowsky SE, Isola ELD, Barbieri MA, Stahl PD. Regulation of trypanosoma cruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin, Rab5, and Rab7. Biochem Biophys Res Commun. 2002;291:516–521. doi:10.1006/bbrc.2002.643711855818
  • Mottola G. The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol. 2014;4:5–8. doi:10.3389/fcimb.2014.0018024524028
  • Singh SB, Tandon R, Krishnamurthy G, Vikram R, Sharma N, Basu SK. Rab5-mediated endosome-endosome fusion regulates hemoglobin endocytosis in leishmania donovani. Embo J. 2003;22:5712–5722. doi:10.1093/emboj/cdg55714592970
  • Jayachandran R, Sundaramurthy V, Combaluzier B, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell. 2007;130:37–50. doi:10.1016/j.cell.2007.04.04317632055
  • Gogulamudi VR, Dubey ML, Kaul D, Atluri VSR, Sehgal R. Downregulation of host tryptophan–aspartate containing coat (TACO) gene restricts the entry and survival of Leishmania donovani in human macrophage model. Front Microbiol. 2015;6:1–10. doi:10.3389/fmicb.2015.0094625653648
  • Maganto-Garcia E, Punzon C, Terhorst C, Fresno M. Rab5 activation by toll-like receptor 2 is required for trypanosoma cruzi internalization and replication in macrophages. Traffic. 2008;9:1299–1315. doi:10.1111/tra.2008.9.issue-818445119
  • Pires D, Marques J, Pombo JP, et al. Role of cathepsins in mycobacterium tuberculosis survival in human macrophages. Sci Rep. 2016;6:1–13. doi:10.1038/srep3224728442746
  • Banerjee S, Bose D, Chatterjee N, et al. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages. Sci Rep. 2016;6:1–14. doi:10.1038/srep2233528442746
  • Borges EC, Machado EMM, Garcia ES, Azambuja P. Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of rhodnius prolixus. Exp Parasitol. 2006;112:130–133. doi:10.1016/j.exppara.2005.09.00816288741
  • Chen S, Wu Z, Wang M, Cheng A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses. 2017;9:1–19. doi:10.3390/v9100291
  • Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine. 2013;31:461–471. doi:10.1016/j.vaccine.2012.11.01523153447
  • Ashhurst TM, Vreden C, Munoz-Erazo L, et al. Antiviral macrophage responses in flavivirus encephalitis. Indian J Med Res. 2013;138:632–647.24434318
  • Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol. 2013;87:11416–11425. doi:10.1128/JVI.01488-1323966395
  • Fan C, Zhang Y, Zhou Y, et al. Up-regulation of A20/ABIN1 contributes to inefficient M1 macrophage polarization during Hepatitis C virus infection Hepatitis viruses. Virol J. 2015;12:1–10. doi:10.1186/s12985-015-0379-025591713
  • Carlin AF, Vizcarra EA, Branche E, et al. Deconvolution of pro- and antiviral genomic responses in zika virus-infected and bystander macrophages. Proc Natl Acad Sci U S A. 2018;115:E9172–E9181. doi:10.1073/pnas.180769011530206152
  • Sun J, Desai M, Fang R. The role of autophagy in microbial infection and immunity. ImmunoTargets Ther. 2015;4:13–26. doi:10.2147/ITT.S7672027471708
  • Moraco AH, Kornfeld H. Cell death and autophagy in tuberculosis. Semin Immunol. 2014;26:497–511. doi:10.1016/j.smim.2014.10.00125453227
  • Gong L, Devenish RJ, Prescott M. Autophagy as a macrophage response to bacterial infection. IUBMB Life. 2012;64:740–747. doi:10.1002/iub.109522815102
  • Crauwels P, Bohn R, Thomas M, et al. Apoptotic-like Leishmania exploit the host´s autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy. 2015;11:285–297. doi:10.1080/15548627.2014.99890425801301
  • Romano PS, Arboit MA, Vázquez CL, Colombo MI. The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy. 2009;5:6–18. doi:10.4161/auto.5.1.716019115481
  • Romano PS, Cueto JA, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life. 2012;64:387–396. doi:10.1002/iub.109522454195
  • Dutta RK, Kathania M, Raje M, Majumdar S. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol. 2012;44:942–954. doi:10.1016/j.biocel.2012.02.02122426116
  • Sharma G, Dutta RK, Khan MA, et al. IL-27 inhibits IFN-γ induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol. 2014;55:335–347. doi:10.1016/j.biocel.2014.08.02225194337
  • Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín- Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol. 2014;5:1–7. doi:10.3389/fmicb.2014.0054724478763
  • Vicenzi E, Pagani I, Ghezzi S, et al. Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochem Soc Trans. 2018;46:609–617. doi:10.1042/BST2017039929678952
  • Ghosh Roy S, Sadigh B, Datan E, Lockshin RA, Zakeri Z. Regulation of cell survival and death during Flavivirus infections. World J Biol Chem. 2014;5:93–105.24921001
  • McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem. 2011;286:22147–22159. doi:10.1074/jbc.M110.19250021511946
  • Datan E, Roy SG, Germain G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016;7:e2127. doi:10.1038/cddis.2015.409
  • Lennemann NJ, Coyne CB. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy. 2017;13:322–332. doi:10.1080/15548627.2016.126519228102736
  • Ma X, Parson C, Ding W-X. Regulation of the homeostasis of hepatic endoplasmic reticulum and cytochrome P450 enzymes by autophagy. Liver Res. 2018;42:645–648.
  • Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–1014. doi:10.4049/jimmunol.160151528115590
  • Pereira-Lopes S, Tur J, Calatayud-Subias JA, Lloberas J, Stracker TH, Celada A. NBS1 is required for macrophage homeostasis and functional activity in mice. Blood. 2015;126:2502–2510. doi:10.1182/blood-2015-04-63737126324700
  • Gundra UM, Girgis NM, Ruckerl D, et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood. 2014;123:e110–e122. doi:10.1182/blood-2013-08-52061924695852
  • Krishnasamy K, Limbourg A, Kapanadze T, et al. Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nat Commun. 2017;8:952. doi:10.1038/s41467-017-00953-229038527
  • Stremmel C, Schuchert R, Wagner F, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75. doi:10.1038/s41467-017-02492-229311541
  • Yoon KW. Dead cell phagocytosis and innate immune checkpoint. BMB Rep. 2017;50:496–503. doi:10.5483/BMBRep.2017.50.10.14728768566
  • Bosurgi L, Cao YGG, Cabeza-Cabrerizo M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072–1076. doi:10.1126/science.aai813228495875
  • Liang J, Jung Y, Tighe RM, et al. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Cell Mol Physiol. 2012;302:L933–L940. doi:10.1152/ajplung.00256.2011
  • A-Gonzalez N, Quintana JA, García-Silva S, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 2017;214:1281–1296. doi:10.1084/jem.2016137528432199
  • Mora-Bau G, Platt AM, van Rooijen N, Randolph GJ, Albert ML, Ingersoll MA. Macrophages subvert adaptive immunity to urinary tract infection. PLoS Pathog. 2015;11:1–23. doi:10.1371/journal.ppat.1005044
  • Zhao Y, Zou W, Du J, Zhao Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J Cell Physiol. 2018;233:6425–6439. doi:10.1002/jcp.v233.10
  • Vogel DYS, Vereyken EJF, Glim JE, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10:1–12. doi:10.1186/1742-2094-10-15123282009
  • Edholm E-S, Rhoo KH, Robert J. Evolutionary aspects of macrophages polarization. Results Probl Cell Differ. 2017;62:3–22. doi:10.1007/978-3-319-54090-0_128455703
  • Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011;51:267–288. doi:10.1146/annurev.pharmtox.010909.10581220887196
  • Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2018;19:92. doi:10.3390/ijms19010092
  • Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 mac population induced by iron imparis wound healing in mice and humans. J Clin Invest. 2011;121:985–997. doi:10.1172/JCI5787321317534
  • Elsegeiny W, Marr KA, Williamson PR. Immunology of cryptococcal infections: developing a rational approach to patient therapy. Front Immunol. 2018;9:651. doi:10.3389/fimmu.2018.0065129670625
  • Rusek P, Wala M, Druszczyńska M, Fol M. Infectious agents as stimuli of trained innate immunity. Int J Mol Sci. 2018;19:E456. doi:10.3390/ijms1902045629401667
  • Couturier J, Lewis DE. HIV persistence in adipose tissue reservoirs. Curr HIV/AIDS Rep. 2018;15:60–71. doi:10.1007/s11904-018-0378-z29423731
  • Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget. 2017;8:114393–114413. doi:10.18632/oncotarget.2310629371994
  • Teng O, Ang CKE, Guan XL. Macrophage-bacteria interactions-a lipid-centric relationship. Front Immunol. 2017;8:1836. doi:10.3389/fimmu.2017.0183629326713
  • Soulat D, Bogdan C. Function of macrophage and parasite phosphatases in Leishmaniasis. Front Immunol. 2017;8:1838. doi:10.3389/fimmu.2017.0183829312331
  • Di Pietro M, Filardo S, Falasca F, Turriziani O, Sessa R. Infectious agents in atherosclerotic cardiovascular diseases through oxidative stress. Int J Mol Sci. 2017;18:E2459. doi:10.3390/ijms1811245929156574
  • Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins. 2017;9:E293. doi:10.3390/toxins910029328934122
  • Terziroli Beretta-Piccoli B, Mainetti C, Peeters M-A, Laffitte E. Cutaneous granulomatosis: a comprehensive review. Clin Rev Allergy Immunol. 2018;54:131–146. doi:10.1007/s12016-017-8666-829352388
  • Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol. 2018;103:35–51. doi:10.1002/JLB.4RI0917-358R29345056
  • Rathnaiah G, Zinniel DK, Bannantine JP, et al. Pathogenesis, molecular genetics, and genomics of Mycobacterium avium subsp., the etiologic agent of Johne’s disease. Front Vet Sci. 2017;4:187. doi:10.3389/fvets.2017.0012729164142
  • Dalli J, Serhan CN. Pro-resolving mediators in regulating and conferring macrophage function. Front Immunol. 2017;8:1400. doi:10.3389/fimmu.2017.0140029163481
  • Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:603. doi:10.3389/fimmu.2014.0060325505468
  • Ishii K, Kawakami K. Up-to-date findings in the host defence mechanism to cryptococcus infection. Med Mycol J. 2014;55:J107–J114.25231225
  • Stijlemans B, Guilliams M, Raes G, Beschin A, Magez S, De Baetselier P. African trypanosomosis: from immune escape and immunopathology to immune intervention. Vet Parasitol. 2007;148:3–13. doi:10.1016/j.vetpar.2007.05.00517560035
  • Yamamoto T. Bacterial strategies for escaping the bactericidal mechanisms by macrophage. Yakugaku Zasshi. 2006;126:1235–1243. doi:10.1248/yakushi.126.123517139149
  • Mitsuyama M. Escape mechanism of intracellular parasitic bacteria and prospect of new approach to infection control. Nihon Rinsho. 2001;59:1013–1021.11391977
  • Bremermann HJ. Mechanism of HIV persistence: implications for vaccines and therapy. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9:459–483.7627623
  • Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–4126. doi:10.1007/s00018-015-1995-y26210152
  • Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today. 2017;22:186–193. doi:10.1016/j.drudis.2016.08.00627554801
  • Mills CD. Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 2015;6:212. doi:10.3389/fimmu.2015.0021225999950
  • Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Ver Immunol. 2012;32:463–488. doi:10.1615/CritRevImmunol.v32.i6.10
  • Tomioka H, Tatano Y, Maw WW, Sano C, Kanehiro Y, Shimizu T. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin Dev Immunol. 2012;2012:1–19. doi:10.1155/2012/635451
  • Mège JL, Mehraj V, Capo C. Macrophage polarization and bacterial infections. Curr Opin Infect Dis. 2011;24:230–234. doi:10.1097/QCO.0b013e328344b73e21311324
  • Luo F, Sun X, Qu Z, Zhang X. Salmonella typhimurium-induced M1 macrophage polarization is dependent on the bacterial O antigen. World J Microbiol Biotechnol. 2016;32:1–7. doi:10.1007/s11274-015-1978-z26596268
  • Quiding-Järbrink M, Raghavan S, Sundquist M. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice. PLoS One. 2010;5:e15018. doi:10.1371/journal.pone.001501821124899
  • Fehlings M, Drobbe L, Moos V, et al. Comparative analysis of the interaction of Helicobacter pylori with human dendritic cells, macrophages, and monocytes. Infect Immun. 2012;80:2724–2734. doi:10.1128/IAI.06224-1122615251
  • Gobert AP, Verriere T, Asim M, et al. Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J Immunol. 2014;193:3013–3022. doi:10.4049/jimmunol.140107525108023
  • Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol. 2014;20:5583–5593. doi:10.3748/wjg.v20.i19.558324914318
  • Borlace GN, Jones HF, Keep SJ, Butler RN, Brooks DA. Helicobacter pylori phagosome maturation in primary human macrophages. Gut Pathog. 2011;3:3–14. doi:10.1186/1757-4749-3-321426584
  • Huang Z, Luo Q, Guo Y, et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One. 2015;10:e0129744. doi:10.1371/journal.pone.012974426091535
  • Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013;35:563–583. doi:10.1007/s00281-013-0388-223864058
  • Roy S, Schmeier S, Kaczkowski B, et al. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. Sci Rep. 2018;8:1–13. doi:10.1038/s41598-018-24509-629311619
  • Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135–1152. doi:10.1084/jem.2017202029500179
  • Lerner TR, Borel S, Greenwood DJ, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017;216:583–594. doi:10.1083/jcb.20160304028242744
  • Fallows D, Peixoto B, Kaplan G, Manca C. Mycobacterium leprae alters classical activation of human monocytes in vitro. J Inflamm. 2016;13:4–8. doi:10.1186/s12950-016-0117-4
  • Yang D, Shui T, Miranda JW, et al. Mycobacterium leprae-infected macrophages preferentially primed regulatory T cell responses and was associated with lepromatous leprosy. PLoS Negl Trop Dis. 2016;10:1–13. doi:10.1371/journal.pntd.0004335
  • de Sousa JR, Sotto MN, Quaresma JAS. Leprosy as a complex infection: breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease. Front Immunol. 2017;8:18–21. doi:10.3389/fimmu.2017.0163528154567
  • Lockwood DNJ, Suneetha L, De Sagili K, et al. Cytokine and protein markers of leprosy reactions in skin and nerves: baseline results for the north indian infir cohort. PLoS Negl Trop Dis. 2011;5:e1327. doi:10.1371/journal.pntd.000137022180790
  • Silva CAM, Belisle JT. Host lipid mediators in leprosy: the hypothesized contributions to pathogenesis. Front Immunol. 2018;9:134. doi:10.3389/fimmu.2018.0013429472920
  • Aarão TL, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve growth factor and pathogenesis of leprosy: review and update. Front Immunol. 2018;9:1–8. doi:10.3389/fimmu.2018.0093929403488
  • Mukhopadhyay D, Mukherjee S, Roy S, et al. M2 polarization of monocytes-macrophages is a hallmark of Indian post kala-azar dermal leishmaniasis. PLoS Negl Trop Dis. 2015;9:1–19. doi:10.1371/journal.pntd.0004145
  • Lee SH, Charmoy M, Romano A, et al. Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med. 2018;215:357–375. doi:10.1084/jem.2017138929247046
  • Sousa JR, Dias F, Neto L, Sotto MN, Antonio J, Quaresma S. Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions. BMC Infect Dis. 2018;18:576. doi:10.1186/s12879-018-3109-630442123
  • Saha B, Szabo G. Innate immune cell networking in hepatitis C virus infection. J Leukoc Biol. 2014;96:757–766. doi:10.1189/jlb.4MR0314-141R25001860
  • Revie D, Salahuddin SZ. Role of macrophages and monocytes in hepatitis C virus infections. World J Gastroenterol. 2014;20:2777–2784. doi:10.3748/wjg.v20.i11.277724659871
  • Cline TD, Beck D, Bianchini E. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol. 2017;98:2401–2412. doi:10.1099/jgv.0.00092228884667
  • Duan M, Hibbs ML, Chen W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol. 2017;95:225–235. doi:10.1038/icb.2016.9727670791
  • Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38:471–482. doi:10.1007/s00281-016-0558-026965109
  • Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–539. doi:10.1007/s00281-017-0629-x28466096
  • Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res. 2008;133:101–112. doi:10.1016/j.virusres.2007.03.01517451827
  • Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5:917–927. doi:10.1038/nri173216322745
  • Pasquereau S, Al Moussawi F, Karam W, Diab Assaf M, Kumar A, Herbein G. Cytomegalovirus, macrophages and breast cancer. Open Virol J. 2017;11:15–27. doi:10.2174/187435790171101001528567162
  • Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol. 2015;204:367–382. doi:10.1007/s00430-015-0403-425776081
  • Contreras A, Botero JE, Slots J. Biology and pathogenesis of cytomegalovirus in periodontal disease. Periodontol 2000. 2014;64:40–56. doi:10.1111/j.1600-0757.2012.00448.x24320955
  • Bang B-R, Elmasry S, Saito T. Organ system view of the hepatic innate immunity in HCV infection. J Med Virol. 2016;88:2025–2037. doi:10.1002/jmv.2456927153233
  • Horner SM, Gale M. Regulation of hepatic innate immunity by hepatitis C virus. Nat Med. 2013;19:879–888. doi:10.1038/nm.325323836238
  • Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. J Immunol. 2013;191:2047–2052. doi:10.4049/jimmunol.130115223964104
  • Cauley LS, Vella AT. Why is coinfection with influenza virus and bacteria so difficult to control? Discov Med. 2015;19:33–40.25636959
  • Mulcahy ME, McLoughlin RM. Staphylococcus aureus and influenza a virus: partners in coinfection. MBio. 2016;7:4–7. doi:10.1128/mBio.02068-16
  • Page C, Goicochea L, Matthews K, et al. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol. 2012;86:13334–13349. doi:10.1128/JVI.01689-1223015710
  • Savarin C, Dutta R, Bergmann CC. Distinct gene profiles of bone marrow-derived macrophages and microglia during neurotropic coronavirus-induced demyelination. Front Immunol. 2018;9:1325. doi:10.3389/fimmu.2018.0132529942315
  • Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70:1189–1196. doi:10.1136/thoraxjnl-2015-20702026286722
  • Bayer C, Varani S, Wang L, et al. Human cytomegalovirus infection of M1 and M2 macrophages triggers inflammation and autologous T-cell proliferation. J Virol. 2013;87:67–79. doi:10.1128/JVI.01585-1223055571
  • Cousins SW, Espinosa-Heidmann DG, Miller DM, et al. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization. PLoS Pathog. 2012;8:e1002671. doi:10.1371/journal.ppat.100267122570607
  • Zheng S, Zhang P, Chen Y, Zheng S, Zheng L, Weng Z. Inhibition of Notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization. PLoS One. 2016;11:e0166808. doi:10.1371/journal.pone.016680827875565
  • Hussaarts L, García-Tardón N, van Beek L, et al. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. Faseb J. 2015;29:3027–3039. doi:10.1096/fj.14-26623925852044
  • Pinheiro RO, Schmitz V, de Andrade Silva BJ, et al. Innate immune responses in leprosy. Front Immunol. 2018;9:1–15. doi:10.3389/fimmu.2018.0051829403488
  • Lopes MF, Costa-Da-Silva AC, Dosreis GA. Innate immunity to Leishmania infection: within phagocytes. Mediators Inflamm. 2014;2014:1–7. doi:10.1155/2014/754965
  • Kong L, Zhang Q, Chao J, et al. Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats. Acta Trop. 2015;143:1–7. doi:10.1016/j.actatropica.2014.12.00125496968