693
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Molecular Detection Of Multidrug-Resistant Salmonella Isolated From Livestock Production Systems In South Africa

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3537-3548 | Published online: 14 Nov 2019

References

  • Robinson TP, Bu D, Carrique-Mas J, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–380. doi:10.1093/trstmh/trw04827475987
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi:10.1016/j.cmi.2015.12.00226706614
  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. doi:10.3389/fpubh.2014.0014525279369
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Therapeut. 2015;40(4):277.
  • Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284–293. doi:10.1080/21553769.2015.1051243
  • Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci World J. 2015;2015. doi:10.1155/2015/520179
  • Chen H-M, Wang Y, Su L-H, Chiu C-H. Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr Neonatol. 2013;54(3):147–152. doi:10.1016/j.pedneo.2013.01.01023597525
  • Uche IV, MacLennan CA, Saul A. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl Trop Dis. 2017;11(1):e0005118. doi:10.1371/journal.pntd.000511828056035
  • Li Y, Xie X, Xu X, et al. Nontyphoidal Salmonella infection in children with acute gastroenteritis: prevalence, serotypes, and antimicrobial resistance in Shanghai, China. Foodborne Pathog Dis. 2014;11(3):200–206. doi:10.1089/fpd.2013.162924313784
  • Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. doi:10.1101/cshperspect.a02524727329032
  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):377–380. doi:10.1016/j.tim.2014.04.007
  • Allcock S, Young E, Holmes M, et al. Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genom. 2017;2.
  • Threlfall EJ. Epidemic Salmonella typhimurium DT 104—a truly international multiresistant clone. J Antimicrob Chemother. 2000;46(1):7–10. doi:10.1093/jac/46.1.710882682
  • Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food-and water-borne infections. FEMS Microbiol Rev. 2002;26(2):141–148. doi:10.1111/j.1574-6976.2002.tb00606.x12069879
  • Chaslus-Dancla E, Martel J-L, Carlier C, Lafont J, Courvalin P. Emergence of aminoglycoside 3-N-acetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob Agents Chemother. 1986;29(2):239–243. doi:10.1128/aac.29.2.2393521474
  • Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064–1073. doi:10.1126/science.257.5073.10641509257
  • Threlfall E, Rowe B, Ward L. A comparison of multiple drug resistance in salmonellas from humans and food animals in England and Wales, 1981 and 1990. Epidemiol Infect. 1993;111(2):189–198. doi:10.1017/S09502688000568928405147
  • Rowe B, Ward LR, Threlfall EJ. Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis. 1997;24(Supplement_1):S106–S109. doi:10.1093/clinids/24.supplement_1.s1068994789
  • Cui S, Li J, Sun Z, et al. Ciprofloxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerg Infect Dis. 2008;14(3):493. doi:10.3201/eid1403.07085718325271
  • Wang J, Li Y, Xu X, et al. Antimicrobial resistance of Salmonella enterica serovar Typhimurium in Shanghai, China. Front Microbiol. 2017;8:510.28400764
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-329276051
  • Tacconelli E, Magrini N, Kahlmeter G, Singh N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organ. 2017;27.
  • Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009;11(12):2970–2988. doi:10.1111/j.1462-2920.2009.01972.x19601960
  • Deris JB, Kim M, Zhang Z, et al. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science. 2013;342(6162):1237435. doi:10.1126/science.123743524288338
  • Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134. doi:10.3389/fmicb.2010.0014321687759
  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645. doi:10.2147/IDR.S17386730349322
  • Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–2876. doi:10.1080/10408398.2015.107719226464037
  • Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges of antibacterial discovery revisited. Ann N Y Acad Sci. 2010;1213(1):5–19. doi:10.1111/j.1749-6632.2010.05828.x21058956
  • Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014;5:334. doi:10.3389/fmicb.2014.0054725071747
  • Eagar H, Swan G, Van Vuuren M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J S Afr Vet Assoc. 2012;83(1):15–23. doi:10.4102/jsava.v83i1.16
  • van Vuuren M. Bacterial resistance against antibiotics: global and local trends. Stockfarm. 2017;7(5):51.
  • Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78(2):257–277. doi:10.1128/MMBR.00056-1324847022
  • Hall RM. Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci. 2012;1267(1):71–78. doi:10.1111/j.1749-6632.2012.06588.x22954219
  • Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–733. doi:10.1128/CMR.00002-1121976606
  • Dhama K, Rajagunalan S, Chakraborty S, et al. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. Pak J Biol Sci. 2013;16(20):1076. doi:10.3923/pjbs.2013.1076.108524506006
  • Tauxe RV. Emerging foodborne pathogens. Int J Food Microbiol. 2002;78(1–2):31–41. doi:10.1016/s0168-1605(02)00232-512222636
  • Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Front Microbiol. 2013;4:135. doi:10.3389/fmicb.2013.0007723734150
  • Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300. doi:10.4103/joacp.JOACP_349_1529109626
  • Nair S, Ashton P, Doumith M, et al. WGS for surveillance of antimicrobial resistance: a pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK population of non-typhoidal Salmonella. J Antimicrob Chemother. 2016;71(12):3400–3408. doi:10.1093/jac/dkw31827585964
  • McDermott PF, Tyson GH, Kabera C, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother. 2016;60(9):5515–5520. doi:10.1128/AAC.01030-1627381390
  • Baugh S, Ekanayaka AS, Piddock LJ, Webber MA. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother. 2012;67(10):2409–2417. doi:10.1093/jac/dks22822733653
  • Parry CM, Threlfall E. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis. 2008;21(5):531–538. doi:10.1097/QCO.0b013e32830f453a18725804
  • Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453(2):254–267. doi:10.1016/j.bbrc.2014.05.09024878531
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–816. doi:10.1016/j.bbapap.2008.11.00519100346
  • van der Heijden J, Reynolds LA, Deng W, et al. Salmonella rapidly regulates membrane permeability to survive oxidative stress. MBio. 2016;7(4):e01238–e01216. doi:10.1128/mBio.01238-1627507830
  • Guerra B, Soto S, Helmuth R, Mendoza MC. Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob Agents Chemother. 2002;46(9):2977–2981. doi:10.1128/aac.46.9.2977-2981.200212183256
  • Crump JA, Medalla FM, Joyce KW, et al. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007. Antimicrob Agents Chemother. 2011;55(3):1148–1154. doi:10.1128/AAC.01333-1021199924
  • Sjölund-Karlsson M, Joyce K, Blickenstaff K, et al. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011;55(9):3985–3989. doi:10.1128/AAC.00590-1121690279
  • Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett Appl Microbiol. 2017;64(5):318–334. doi:10.1111/lam.1272428208218
  • Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112(18):5649–5654. doi:10.1073/pnas.150314111225792457
  • Zishiri OT, Mkhize N, Mukaratirwa S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J Vet Res. 2016;83(1):1–11. doi:10.4102/ojvr.v83i1.1067
  • Li, H., Bhaskara, A., Megalis, C. & Tortorello, M.L., 2012 Transcriptome analysis of Salmonella desiccation resistance’, Foodborne Pathogens and Disease.2012;12;1143–1151. doi:10.1089/fpd.2012.1254.
  • Bäumler AJ, Heffron F, Reissbrodt R. Rapid detection of Salmonella enterica with primers specific for iroB. J Clin Microbiol. 1997;35(5):1224–1230.9114411
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Informational Supplement. Clinical and Laboratory Standards Institute (CLSI), Wayne, PA, USA; 2009.
  • Poppe C, Martin LC, Gyles CL, Reid-Smith R, Boerlin P, McEwen SA, et al.Acquisition of resistance to extended-spectrum cephalosporins by Salmonella enterica subsp. enterica serovar Newport and Escherichia coli in turkey poult intestinal tract. Appl Environ Microbiol. 2005;71(3):1184–9210.1128.
  • Guerra B, Soto SM, Argüelles JM, Mendoza MC. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4, 5, 12: i:−]. Antimicrobial agents and chemotherapy. 2001;45(4):1305–1308.11257054
  • Fonseca EL, Mykytczuk OL, Asensi MD, Reis EM, Ferraz LR, Paula FL, Ng LK, Rodrigues DP. Clonality and antimicrobial resistance gene profiles of multidrug-resistant Salmonella enterica serovar Infantis isolates from four public hospitals in Rio de Janeiro, Brazil. Journal of clinical microbiology. 2006;44(8):2767–2772.16891490
  • Poppe CL, Martin A, Muckle MA, McEwen S, Weir E. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can J Vet Res. 2006;70:105–114.16639942
  • Frank T, Gautier V, Talarmin A, Bercion R, Arlet G. Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chemother. 2007;59(4):742–745. doi:10.1093/jac/dkl53817350987
  • Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–170. 6351743
  • Department of Agriculture FaF, South Africa (DAFF). Fertilizer, Farm Feeds, Agricultural Remedies and Stock Remedies Act, 1947; Publication of Farm Feeds (animal Feeds) Policy for Public Comments. Act No. 36 of 1947 C.F.R. Pretoria, South Africa: Department of Agriculture, Forestry and Fisheries, South Africa (DAFF); 1996 Available from: http://www.daff.gov.za/.
  • Dweba CC, Zishiri OT, El Zowalaty ME. Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infect Drug Resist. 2018;11:2497.30555249
  • Igbinosa IH. Prevalence and detection of antibiotic-resistant determinant in Salmonella isolated from food-producing animals. Trop Anim Health Prod. 2015;47(1):37–43. doi:10.1007/s11250-014-0680-825348646
  • Madoroba E, Kapeta D, Gelaw AK. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J Vet Res. 2016;83(1):1–8. doi:10.4102/ojvr.v83i1.1109
  • Mathole M, Muchadeyi F, Mdladla K, Malatji D, Dzomba E, Madoroba E. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa. Food Control. 2017;72:219–224. doi:10.1016/j.foodcont.2016.05.006
  • Kuang D, Xu X, Meng J, et al. Antimicrobial susceptibility, virulence gene profiles and molecular subtypes of Salmonella Newport isolated from humans and other sources. Infect Genet Evol. 2015;36:294–299. doi:10.1016/j.meegid.2015.10.00326440729
  • Iwu CJ, Iweriebor BC, Obi LC, Basson AK, Okoh AI. Multidrug-resistant Salmonella isolates from swine in the Eastern Cape Province, South Africa. J Food Prot. 2016;79(7):1234–1239. doi:10.4315/0362-028X.JFP-15-22427357044
  • Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49. doi:10.2147/IDR25878509
  • Phillips I, Casewell M, Cox T, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004;53(1):28–52. doi:10.1093/jac/dkg48314657094
  • Ahmed AM, Shimabukuro H, Shimamoto T. Isolation and molecular characterization of multidrug‐resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan. J Food Sci. 2009;74(7):M405–M410. doi:10.1111/j.1750-3841.2009.01291.x19895488
  • VT Nair D, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods. 2018;7(10):167. doi:10.3390/foods7100167
  • Møller TS, Overgaard M, Nielsen SS, et al. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol. 2016;16(1):39. doi:10.1186/s12866-016-0649-z26969122
  • Sørensen JT, Edwards S, Noordhuizen J, Gunnarsson S. Animal production systems in the industrialised world. Rev Sci Tech. 2006;25(2):493–503.17094692
  • Eguale T, Birungi J, Asrat D, et al. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob Resist Infect Control. 2017;6(1):13. doi:10.1186/s13756-017-0171-628105330
  • Giuriatti J, Stefani LM, Brisola MC, Crecencio RB, Bitner DS, Faria GA. Salmonella Heidelberg: genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs). Microb Pathog. 2017;109:195–199. doi:10.1016/j.micpath.2017.05.04028578094
  • Meissner H, Scholtz M, Palmer A. Sustainability of the South African Livestock Sector towards 2050 Part 1: worth and impact of the sector. S Afr J Anim Sci. 2013;43(3):282–297. doi:10.4314/sajas.v43i3.5
  • Kiiru J, Butaye P, Goddeeris BM, Kariuki S. Analysis for prevalence and physical linkages amongst integrons, ISE cp 1, IS CR 1, Tn 21 and Tn 7 encountered in Escherichia coli strains from hospitalized and non-hospitalized patients in Kenya during a 19-year period (1992–2011). BMC Microbiol. 2013;13(1):109. doi:10.1186/1471-2180-13-10923682924
  • Argüello H, Guerra B, Rodríguez I, Rubio P, Carvajal A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in Salmonella enterica spp., multidrug-resistant isolates from pigs. Genes. 2018;9(5):256. doi:10.3390/genes9050256