156
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Antimicrobial Resistance And Molecular Characteristics Among Neisseria gonorrhoeae Clinical Isolates In A Chinese Tertiary Hospital

, , , , , , , , , , & show all
Pages 3301-3309 | Published online: 23 Oct 2019

References

  • Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10(12):e0143304. doi:10.1371/journal.pone.014330426646541
  • Kirkcaldy RD, Harvey A, Papp JR, et al. Neisseria gonorrhoeae antimicrobial susceptibility surveillance - the gonococcal isolate surveillance project, 27 sites, United States, 2014. MMWR Surveill Summ. 2016;65(7):1–19. doi:10.15585/mmwr.ss6507a1
  • Cole MJ, Spiteri G, Jacobsson S, et al. Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis. 2017;17(1):617. doi:10.1186/s12879-017-2757-228893203
  • Galarza PG, Alcala B, Salcedo C, et al. Emergence of high level azithromycin-resistant Neisseria gonorrhoeae strain isolated in Argentina. Sex Transm Dis. 2009;36(12):787–788. doi:10.1097/OLQ.0b013e3181b61bb119734823
  • Unemo M, Golparian D, Hellmark B. First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob Agents Chemother. 2014;58(1):624–625. doi:10.1128/AAC.02093-1324189248
  • Ni C, Xue J, Zhang C, Zhou H, van der Veen S. High prevalence of Neisseria gonorrhoeae with high-level resistance to azithromycin in Hangzhou, China. J Antimicrob Chemother. 2016;71(8):2355–2357. doi:10.1093/jac/dkw13127090631
  • Lucas CE, Balthazar JT, Hagman KE, Shafer WM. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol. 1997;179(13):4123–4128. doi:10.1128/jb.179.13.4123-4128.19979209024
  • Luna VA, Cousin S Jr., Whittington WL, Roberts MC. Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother. 2000;44(9):2503–2506. doi:10.1128/aac.44.9.2503-2506.200010952602
  • Gregory ST, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol. 1999;289(4):827–834. doi:10.1006/jmbi.1999.283910369764
  • Tait-Kamradt A, Davies T, Cronan M, et al. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother. 2000;44(8):2118–2125. doi:10.1128/aac.44.8.2118-2125.200010898684
  • Wan C, Li Y, Le WJ, et al. Increasing resistance to azithromycin in neisseria gonorrhoeae in Eastern Chinese cities: resistance mechanisms and genetic diversity among isolates from Nanjing. Antimicrob Agents Chemother. 2018;62(5). doi:10.1128/AAC.02499-17
  • Demczuk W, Martin I, Peterson S, et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol. 2016;54(5):1304–1313. doi:10.1128/JCM.03195-1526935729
  • Mavroidi A, Tzelepi E, Siatravani E, et al. Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. J Clin Microbiol. 2011;49(4):1196–1201. doi:10.1128/JCM.02233-1021248096
  • Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis. 2004;189(8):1497–1505. doi:10.1086/38304715073688
  • Choudhury B, Risley CL, Ghani AC, et al. Identification of individuals with gonorrhoea within sexual networks: a population-based study. Lancet. 2006;368(9530):139–146. doi:10.1016/S0140-6736(06)69003-X16829298
  • Liang JY, Cao WL, Li XD, et al. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009-2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis. 2016;16:152. doi:10.1186/s12879-016-1987-z27080231
  • Jiang FX, Lan Q, Le WJ, Su XH. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Hefei (2014-2015): genetic characteristics of antimicrobial resistance. BMC Infect Dis. 2017;17(1):366. doi:10.1186/s12879-017-2757-228545411
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed.CLSI Supplement M100. Wayne (PA): CLSI; 2019.
  • Depardieu F, Courvalin P. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45(1):319–323. doi:10.1128/AAC.45.1.319-323.200111120988
  • Allen VG, Farrell DJ, Rebbapragada A, et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Journal. 2011;55(Issue):703–712.
  • Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002;46(9):3020–3025. doi:10.1128/aac.46.9.3020-3025.200212183262
  • Shimuta K, Watanabe Y, Nakayama S, et al. Emergence and evolution of internationally disseminated cephalosporin-resistant Neisseria gonorrhoeae clones from 1995 to 2005 in Japan. BMC Infect Dis. 2015;15:378. doi:10.1186/s12879-015-1110-x26381611
  • Yin YP, Han Y, Dai XQ, et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: a retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018;15(2):e1002499. doi:10.1371/journal.pmed.100259329408881
  • Yan J, Xue J, Chen Y, et al. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother. 2019;74(1):29–37. doi:10.1093/jac/dky41230329062
  • Li W, Zhu BY, Qin SQ, et al. Surveillance of antibiotic susceptibility patterns of Neisseria gonorrhoeae from 2013 to 2015 in Guangxi Province, China. Jpn J Infect Dis. 2018;71(2):148–151. doi:10.7883/yoken.JJID.2017.16929279442
  • Zhao L, Liu A, Li R, Zhao S. Trends in antimicrobial resistance in Neisseria gonorrhoeae and molecular characteristics of N. gonorrhoeae with decreased susceptibility to ceftriaxone in Shandong, China, 2007 to 2014. Int J Antimicrob Agents. 2018;51(1):52–56. doi:10.1016/j.ijantimicag.2017.06.00428729124
  • Lahra MM, Enriquez RP. Australian Gonococcal Surveillance Programme, 1 July to 30 September 2015. Commun Dis Intell Q Rep. 2016;40(1):E179–81.27080026
  • Yasuda M, Hatazaki K, Ito S, et al. Antimicrobial Susceptibility of Neisseria gonorrhoeae in Japan from 2000 to 2015. Sex Transm Dis. 2017;44(3):149–153. doi:10.1097/OLQ.000000000000055628178112
  • Gonococcal Antimicrobial Susceptibility Surveillance in Europe-Results summary 2017 European Centre for Disease Prevention and Control(ECDC).2019.doi:10.2900/415493.
  • Centers for Disease Control and Prevention (CDC). Cephalosporin susceptibility among Neisseria gonorrhoeae isolates–united States, 2000-2010. MMWR Morb Mortal Wkly Rep. 2011;60(26):873–877.21734634
  • Lahra MM. Annual report of the Australian gonococcal surveillance programme, 2011. Commun Dis Intell Q Rep. 2012;36(2):E166–E173.23186215
  • Hagman KE, Shafer WM. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol. 1995;177(14):4162–4165. doi:10.1128/jb.177.14.4162-4165.19957608095
  • Jacobsson S, Golparian D, Cole M, et al. WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother. 2016;71(11):3109–3116. doi:10.1093/jac/dkw27927432597
  • Allen VG, Seah C, Martin I, Melano RG. Azithromycin resistance is coevolving with reduced susceptibility to cephalosporins in Neisseria gonorrhoeae in Ontario, Canada. Antimicrob Agents Chemother. 2014;58(5):2528–2534. doi:10.1128/AAC.02608-1324514092
  • Belkacem A, Jacquier H, Goubard A, et al. Molecular epidemiology and mechanisms of resistance of azithromycin-resistant Neisseria gonorrhoeae isolated in France during 2013-14. J Antimicrob Chemother. 2016;71(9):2471–2478. doi:10.1093/jac/dkw18227301565
  • Katz AR, Komeya AY, Soge OO, et al. Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin Infect Dis. 2012;54(6):841–843. doi:10.1093/cid/cir92922184617
  • Chisholm SA, Neal TJ, Alawattegama AB, et al. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales. J Antimicrob Chemother. 2009;64(2):353–358. doi:10.1093/jac/dkp18819468025
  • Epidemic of infectious diseases in China, 2016. Chinese Center for Disease Control and Prevention 2018 http://www.nhfpc.gov.cn/jkj/s3578/201702/38ca5990f8a54ddf9ca6308fec406157.shtml
  • Wang QQ, Zhang GC. Guidelines for Diagnosis and Treatment of Sexually Transmitted Diseases [In Chinese]. Shanghai: Shanghai Science and Technology Press; 2007.
  • Liu YH, Wang YH, Liao CH, Hsueh PR. Emergence and Spread of Neisseria gonorrhoeae Strains with High-level Resistance to Azithromycin in Taiwan from 2001 to 2018. Antimicrob Agents Chemother. 2019. doi:10.1128/AAC.00773-19
  • Jennison AV, Whiley D, Lahra MM, et al. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Euro Surveill. 2019;24(8). doi:10.2807/1560-7917.ES.2019.24.8.1900118