118
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Comparison Of drrA And drrB Efflux Pump Genes Expression In Drug-Susceptible And -Resistant Mycobacterium tuberculosis Strains Isolated From Tuberculosis Patients In Iran

, ORCID Icon, , & ORCID Icon
Pages 3437-3444 | Published online: 05 Nov 2019

References

  • Raviglione M, Sulis G. Tuberculosis 2015: burden, challenges and strategy for control and elimination. Infect Dis Rep. 2016;8(2):6570. doi:10.4081/idr.2016.657027403269
  • WHO. Global tuberculosis report. Geneva, Switzerland: World Health Organization; 2018 Available from: http://apps.who.int/medicinedocs/en/m/abstract/Js23553en/. Accessed on September 18, 2018.
  • Bastos ML, Hussain H, Weyer K, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first-and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis. 2014;59(10):1364–1374. doi:10.1093/cid/ciu61925097082
  • Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol. 2016;90(7):1585–1604. doi:10.1007/s00204-016-1727-627161440
  • WHO. consolidated guidelines on drug-resistant tuberculosis treatment. World Health Organization; Geneva, Switzerland, 2019 Available from: https://apps.who.int/iris/bitstream/handle/10665/311390/WHO-CDS-TB-2019.3-eng.pdf.
  • Lange C, Abubakar I, Alffenaar JW, et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur Respir J. 2014;44(1):23–63. doi:10.1183/09031936.0018831324659544
  • Palomino J, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3(3):317–340. doi:10.3390/antibiotics303031727025748
  • Coelho T, Machado D, Couto I, et al. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Front Microbiol. 2015;6:330. doi:10.3389/fmicb.2015.0033025972842
  • Machado D, Coelho TS, Perdigão J, et al. Interplay between mutations and efflux in drug resistant clinical isolates of Mycobacterium tuberculosis. Front Microbiol. 2017;8:711. doi:10.3389/fmicb.2017.0071128496433
  • Mazando S, Zimudzi C, Zimba M, et al. High efflux pump activity and gene expression at baseline linked to poor tuberculosis treatment outcomes. J Med Biomed Sci. 2017;6(1):8–17.
  • Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;56(5):2643–2651. doi:10.1128/AAC.06003-1122314527
  • Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–681. doi:10.1128/CMR.00043-1223034325
  • Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2000;24(4):449–467. doi:10.1111/j.1574-6976.2000.tb00550.x10978546
  • Choudhuri BS, Bhakta S, Barik R, Joyoti BA, Kundu M, Chakrabarti P. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J. 2002;367(1):279–285. doi:10.1042/BJ2002061512057006
  • Kent PT. Public health mycobacteriology: a guide for the level III laboratory, 1985 Available from: https://ci.nii.ac.jp/naid/10027388578 Accessed 927, 2019.
  • Hosek J, Svastova P, Moravkova M, Pavlik I, Bartos M. Methods of mycobacterial DNA isolation from different biological material: a review. Vet Med (Praha). 2006;51(5):180–192. doi:10.17221/5538-VETMED
  • Kocagöz T, Yilmaz E, Ozkara S, et al. Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure. J Clin Microbiol. 1993;31(6):1435–1438.8314982
  • Woods GL. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Approved Standard M24-A2 31. 2011 Available from: https://clsi.org/media/1463/m24a2_sample.pdf.
  • Li G, Zhang J, Guo Q, et al. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 2015;10(2):e0119013. doi:10.1371/journal.pone.011901325695504
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.126211846609
  • Niederweis M. Mycobacterial porins–new channel proteins in unique outer membranes. Mol Microbiol. 2003;49(5):1167–1177. doi:10.1046/j.1365-2958.2003.03662.x12940978
  • Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol. 2002;92:65S–71S. doi:10.1046/j.1365-2672.92.5s1.4.x
  • Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol. 2014;4:168. doi:10.3389/fphar.2013.0016824427138
  • Jiang X, Zhang W, Zhang Y, et al. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist. 2008;14(1):7–11. doi:10.1089/mdr.2008.077218321205
  • Da Silva PE, Von Groll A, Martin A, Palomino JC. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2011;63(1):1–9. doi:10.1111/j.1574-695X.2011.00831.x21668514
  • Gupta AK, Katoch VM, Chauhan DS, et al. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist. 2010;16(1):21–28. doi:10.1089/mdr.2009.005420001742
  • Wang K, Pei H, Huang B, et al. The expression of ABC efflux pump, Rv1217c–rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol. 2013;66(3):222–226. doi:10.1007/s00284-012-0215-323143285
  • Bansal A, Mallik D, Kar D, Ghosh AS. Identification of a multidrug efflux pump in Mycobacterium smegmatis. FEMS Microbiol Lett. 2016;363(13):fnw128. doi:10.1093/femsle/fnw12827190152
  • Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y. Study of the rifampin mono-resistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(2):893–900. doi:10.1128/AAC.01024-1223208715
  • Calgin MK, Sahin F, Turegun B, et al. Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Diagn Microbiol Infect Dis. 2013;76(3):291–297. doi:10.1016/j.diagmicrobio.2013.02.03323561272
  • Machado D, Couto I, Perdigão J, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PloS One. 2012;7(4):e34538. doi:10.1371/journal.pone.003453822493700
  • Song L, Wu X. Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents. 2016;47(6):421–429. doi:10.1016/j.ijantimicag.2016.04.00727211826