519
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Virulence Factors Of Carbapenem-Resistant Pseudomonas aeruginosa In Hospital-Acquired Infections In Mansoura, Egypt

ORCID Icon &
Pages 3455-3461 | Published online: 07 Nov 2019

References

  • Xavier DE, Picão RC, Girardello R, Fehlberg LC, Gales AC. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010;10(1):217.20704733
  • Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65. doi:10.3389/fmicb.2011.0006521747788
  • Ellappan K, Belgode Narasimha H, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist. 2018;12:37–43. doi:10.1016/j.jgar.2017.08.01828893647
  • Kim H, Sung JY, Yong D, et al. Disk carbapenemase test for the rapid detection of KPC-, NDM-, and other metallo-beta-lactamase-producing gram-negative bacilli. Ann Lab Med. 2016;36(5):434–440. doi:10.3343/alm.2016.36.5.43427374708
  • Pollini S, Fiscarelli E, Mugnaioli C, et al. Pseudomonas aeruginosa infection in cystic fibrosis caused by an epidemic metallo-β-lactamase-producing clone with a heterogeneous carbapenem resistance phenotype. Clin Microbiol Infect. 2011;17(8):1272–1275. doi:10.1111/j.1469-0691.2011.03466.x21375657
  • Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. 8th ed. Elsevier Health Sciences; 2015.
  • Cotar AI, Chifiriuc MC, Banu O, Lazar V. Molecular characterization of virulence patterns in Pseudomonas aeruginosa strains isolated from respiratory and wound samples. Biointerface Res Appl Chem. 2013;3(2).
  • Persyn E, Sassi M, Aubry M, et al. Rapid genetic and phenotypic changes in Pseudomonas aeruginosa clinical strains during ventilator-associated pneumonia. Sci Rep. 2019;9(1):4720. doi:10.1038/s41598-019-41201-530886315
  • Mahon C, Lehman D, Manuselis GJMEHS Jr. Textbook of Diagnostic Microbiology Maryland Hieghts. Philadelphia: W.B. Saunders; 2014:249–303.
  • Clinical laboratory Institute standard. Document M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Wayne: Clinical and Laboratory Standards Institute; 2015.
  • Clinical laboratory Institute standard. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard—9th Edn (CLSI Document M07–A9). Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001;7(2):88–91. doi:10.1046/j.1469-0691.2001.00204.x11298149
  • Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40(10):3798–3801. doi:10.1128/JCM.40.10.3798-3801.200212354884
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.00221398074
  • Zhu H, Bandara R, Conibear TC, et al. Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. Invest Ophthalmol Vis Sci. 2004;45(6):1897–1903. doi:10.1167/iovs.03-098015161855
  • Castro-Escarpulli G, Figueras MJ, Aguilera-Arreola G, et al. Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int J Food Microbiol. 2003;84(1):41–49. doi:10.1016/S0168-1605(02)00393-812781953
  • Kus JV, Tullis E, Cvitkovitch DG, Burrows LLJM. Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology. 2004;150(5):1315–1326. doi:10.1099/mic.0.26822-015133094
  • Essar DW, Eberly L, Hadero A, Crawford I. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 1990;172(2):884–900. doi:10.1128/jb.172.2.884-900.19902153661
  • O’Toole GAJJ. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:e2437.
  • Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41(6):848–854. doi:10.1086/43280316107985
  • Rodulfo H, Arcia A, Hernandez A, et al. Virulence factors and integrons are associated with MDR and XDR phenotypes in nosocomial strains of Pseudomonas aeruginosa in a Venezuelan university hospital. Rev Inst Med Trop Sao Paulo. 2019;61:e20. doi:10.1590/s1678-994620196102030970111
  • Rossi Goncalves I, Dantas RCC, Ferreira ML, Batistao D, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48(2):211–217. doi:10.1016/j.bjm.2016.11.00428034598
  • Hashem H, Hanora A, Abdalla S, Shaeky A, Saad A. Dissemination of metallo-beta-lactamase in Pseudomonas aeruginosa isolates in Egypt: mutation in blaVIM-4. APMIS. 2017;125(5):499–505. doi:10.1111/apm.1266928295668
  • Sonbol FI, Khalil MAEF, Mohamed AB, Ali SS. Correlation between antibiotic resistance and virulence of pseudomonas aeruginosa clinical isolates. Turk J Med Sci. 2015;45:568–577. doi:10.3906/sag-1406-5826281322
  • Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133–1148. doi:10.1099/jmm.0.009142-019528173
  • Ruiz-Roldan L, Belles A, Bueno J, et al. Pseudomonas aeruginosa isolates from Spanish children: occurrence in faecal samples, antimicrobial resistance, virulence, and molecular typing. Biomed Res Int. 2018;2018:8060178. doi:10.1155/2018/806017829992165
  • Silva LV, Galdino AC, Nunes AP, et al. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. Int J Med Microbiol. 2014;304(8):990–1000. doi:10.1016/j.ijmm.2014.07.00125127423
  • Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-beta-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Ci Ji Yi Xue Za Zhi. 2018;30(2):90–96. doi:10.4103/tcmj.tcmj_101_1729875589
  • Al Dawodeyah HY, Obeidat N, Abu-Qatouseh LF, Shehabi AA. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs. 2018;8(1):31–40. doi:10.18683/germs.2018.113029564246
  • Baniya B, Pant ND, Neupane S, et al. Biofilm and metallo beta-lactamase production among the strains of Pseudomonas aeruginosa and Acinetobacter spp. at a Tertiary Care Hospital in Kathmandu, Nepal. Ann Clin Microbiol Antimicrob. 2017;16(1):70. doi:10.1186/s12941-017-0245-629096652
  • Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47(3):247–250. doi:10.1093/jac/47.3.24711222556
  • Bogiel T, DEPTUŁA A, KWIECIŃSKA-PIRÓG J, PRAŻYŃSKA M, Mikucka A, Gospodarek-Komkowska E. The prevalence of exoenzyme S gene in multidrug-sensitive and multidrug-resistant Pseudomonas aeruginosa clinical strains. Pol J Microbiol. 2017;66(4):427–431. doi:10.5604/01.3001.0010.650029313517
  • Ghanbarzadeh Corehtash Z, Khorshidi A, Firoozeh F, Akbari H, Mahmoudi Aznaveh A. Biofilm formation and virulence factors among pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol. 2015;8(10):e22345. doi:10.5812/jjm26587205
  • Heydari S, Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2015;8(3):e15514–e15514. doi:10.5812/jjm25964848
  • Deptula A, Gospodarek E. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch Microbiol. 2010;192(1):79–84. doi:10.1007/s00203-009-0528-119960337
  • Jacome PR, Alves LR, Cabral AB, Lopes AC, Maciel MA. Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Rev Soc Bras Med Trop. 2012;45(6):707–712. doi:10.1590/S0037-8682201200060001023295873
  • Wang H, Tu F, Gui Z, Lu X, Chu W. Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of pseudomonas aeruginosa. Indian J Microbiol. 2013;53(2):163–167. doi:10.1007/s12088-013-0370-724426103
  • Fuse K, Fujimura S, Kikuchi T, et al. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother. 2013;19(1):82–88. doi:10.1007/s10156-012-0457-922865331
  • Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect. 2010;16(12):1770–1775. doi:10.1111/j.1469-0691.2010.03177.x20132256
  • Kumar R, Chhibber S, Harjai K. Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int. 2009;76(3):286–292. doi:10.1038/ki.2009.18319494801