1,647
Views
75
CrossRef citations to date
0
Altmetric
Review

Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 423-434 | Published online: 12 Feb 2020

References

  • Blanchard C, Barnett P, Perlmutter J, Dunman PM. Identification of Acinetobacter baumannii serum-associated antibiotic efflux pump inhibitors. Antimicrob Agents Chemother. 2014;03535–14.
  • Zahedi Bialvaei A, Samadi Kafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol. 2015;7(5):226–246.26719779
  • Mullié C, Bouharkat B, Guiheneuf R, Serra C, Touil-Meddah AT, Sonnet P. Efflux pumps in Acinetobacter baumannii: role in antibiotic resistance and interest of efflux pump inhibitors as additional therapeutic weapons In: Méndez-Vilas A, editor. Antimicrobial Research: Novel Bioknowledge and Educational Programs. Formatex Research Center; 2017.
  • Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015;31(4):707–721. doi:10.1185/03007995.2015.101898925697677
  • Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947–953. doi:10.1128/AAC.01388-1021173183
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi:10.1128/CMR.00058-0718625687
  • Eliopoulos GM, Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008;46(8):1254–1263. doi:10.1086/52919818444865
  • Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. J Glob Infect Dis. 2010;2(3):291. doi:10.4103/0974-777X.6853820927292
  • Shiralizadeh S, Taghizadeh S, Asgharzadeh M, et al. Urinary tract infections: raising problem in developing countries. Rev Med Microbiol. 2018;29(4):159–165.
  • Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010;51(1):79–84. doi:10.1086/65297520504234
  • Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemother. 2016;28(1):1–19. doi:10.1179/1973947815Y.000000006326256147
  • Katragkou A, Roilides E. Successful treatment of multidrug-resistant Acinetobacter baumannii central nervous system infections with colistin. J Clin Microbiol. 2005;43(9):4916–4917. doi:10.1128/JCM.43.9.4916-4917.200516145177
  • Wieczorek P, Sacha P, Hauschild T, Zórawski M, Krawczyk M, Tryniszewska E. Multidrug resistant Acinetobacter baumannii–the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Multidrug resistant Acinetobacter baumannii–the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol. 2008;46(3):. doi:10.2478/v10042-008-0056-x
  • Vila J, Martí S, Sanchez-Céspedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007;59(6):1210–1215. doi:10.1093/jac/dkl50917324960
  • Ribera A, Ruiz J, Jiminez de Anta MT, Vila J. Effect of an efflux pump inhibitor on the MIC of nalidixic acid for Acinetobacter baumannii and Stenotrophomonas maltophilia clinical isolates. J Antimicrob Chemother. 2002;49(4):697–698. doi:10.1093/jac/49.4.69711909848
  • Piddock LJ. Multidrug-resistance efflux pumps? Not just for resistance. Nat. Rev. Microbiol. 2006;4(8):629.16845433
  • Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453(2):254–267. doi:10.1016/j.bbrc.2014.05.09024878531
  • Saier MH Jr, Reddy VS, Tamang DG, Västermark ÅJ. The transporter classification database. Nucleic Acids Res. 2013;42(D1):D251–D8. doi:10.1093/nar/gkt109724225317
  • Saier MH Jr, Paulsen IT, editors. Phylogeny of multidrug transporters. Semin Cell Dev Biol. 2001; Elsevier.
  • Nikaido HJ. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 1989;33(11):1831.2692513
  • Ma D, Cook D, Alberti M, Pon N, Nikaido H, Hearst JE. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol. 1993;175(19):6299–6313. doi:10.1128/jb.175.19.6299-6313.19938407802
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923–1929. doi:10.1128/JB.187.6.1923-1929.200515743938
  • Nikaido HJ. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 1996;178(20):5853.8830678
  • Pumbwe L, Piddock LJV. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol Lett. 2002;206(2):185–189. doi:10.1111/j.1574-6968.2002.tb11007.x11814661
  • Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance inStreptococcus pneumoniae. Antimicrob Agents Chemother. 1999;43(1):187–189.9869592
  • Nikaido H, editor. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol. 2001; Elsevier.
  • Kaatz GW, SM S. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1995;39(12):2650–2655.8592996
  • Webber M, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother. 2003;51(1):9–11. doi:10.1093/jac/dkg05012493781
  • Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V. Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol. 2004;14(6):741–747. doi:10.1016/j.sbi.2004.10.00315582398
  • Paulsen I. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol. 2003;6(5):446–451. doi:10.1016/j.mib.2003.08.00514572535
  • Wieczorek P, Sacha P, Hauschild T, Zórawski M, Krawczyk M, Tryniszewska E. Multidrug resistant Acinetobacter baumannii–the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol. 2008;46(3):257–267. doi:10.2478/v10042-008-0056-x19056528
  • Magnet S, Courvalin P, Lambert TJ. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45(12):3375–3380. doi:10.1128/AAC.45.12.3375-3380.200111709311
  • Vila J, Martí S, Sanchez-Céspedes JJ. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007;59(6):1210–1215. doi:10.1093/jac/dkl50917324960
  • Fournier P-E, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1):e7.16415984
  • Quistgaard EM, Löw C, Guettou F, Nordlund PJ. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol. 2016;17(2):123.26758938
  • Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI. Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. mBio. 2017;8(5):e01172–17. doi:10.1128/mBio.01172-1729089426
  • Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K, Yamaguchi AJ. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun. 2018;9(1):124.29317622
  • Venter H, Mowla R, Ohene-Agyei T, Ma SJ. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol. 2015;6(377).
  • Li X-Z, Nikaido H. Antimicrobial drug efflux pumps in Escherichia coli In: Efflux-Mediated Antimicrobial Resistance in Bacteria. Drugs. 2009;69(12):1555–1623.19678712
  • Li X-Z, Plésiat P, Nikaido HJ. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. doi:10.1128/CMR.00117-1425788514
  • Sapunaric F, Aldema-Ramos M, McMurry L. Tetracycline Resistance: Efflux, Mutation, and Other Mechanisms. In: White D, Alekshun M, McDermott P, editors. Frontiers in Antimicrobial Resistance Washington, DC: ASM Press;2005:3–18. doi:10.1128/9781555817572.ch1.
  • McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980;77(7):3974–3977. doi:10.1073/pnas.77.7.39747001450
  • Yamaguchi A, Udagawa T, Sawai TJ. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem. 1990;265(9):4809–4813.2156856
  • Tamura N, Konishi S, Yamaguchi AJ. Mechanisms of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach. Curr Opin Chem Biol. 2003;7(5):570–579. doi:10.1016/j.cbpa.2003.08.01414580560
  • Marger MD, Saier MH Jr. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993;18(1):13–20.8438231
  • Lin M-F, Lin -Y-Y, Lan C-Y. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. J Microbiol. 2017;55(2):130–136. doi:10.1007/s12275-017-6408-528120193
  • Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii Is regulated by the AdeRS two-component system. Antimicrob Agents Chemother. 2004;48(9):3298–3304. doi:10.1128/AAC.48.9.3298-3304.200415328088
  • Rajamohan G, Srinivasan VB, Gebreyes WA. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother. 2009;65(2):228–232. doi:10.1093/jac/dkp42720008046
  • Yoon E-J, Courvalin P, Grillot-Courvalin C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother. 2013;57(7):2989–2995. doi:10.1128/AAC.02556-1223587960
  • Abdi SN, Ghotaslou R, Asgharzadeh M, et al. AdeB efflux pump gene knockdown by mRNA mediated peptide nucleic acid in multidrug resistance Acinetobacter baumannii. Microb Pathog. 2020;138:1.
  • Radestock S, Forrest LR. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol. 2011;407(5):698–715. doi:10.1016/j.jmb.2011.02.00821315728
  • Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38(3):151–159. doi:10.1016/j.tibs.2013.01.00323403214
  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH. The major facilitator superfamily (MFS) revisited. FEBS J. 2012;279(11):2022–2035. doi:10.1111/j.1742-4658.2012.08588.x22458847
  • Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, Dutzler RJ. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat Commun. 2017;8:14033.28059071
  • Marti S, Fernandez-Cuenca F, Pascual A, et al. Prevalence of the tetA and tetB genes as mechanisms of resistance to tetracycline and minocycline in Acinetobacter baumannii clinical isolates. Enferm Infecc Microbiol Clin. 2006;24(2):77.16545313
  • Sahu PK, Iyer PS, Gaikwad MB, Talreja SC, Pardesi KR, Chopade BA. An MFS transporter-like ORF from MDR Acinetobacter baumannii AIIMS 7 is associated with adherence and biofilm formation on biotic/abiotic surface. Int J Microbiol. 2012;2012.
  • Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter—AbaF. J Antimicrob Chemother. 2016;72(1):68–74. doi:10.1093/jac/dkw38227650185
  • Yerushalmi H, Lebendiker M, Schuldiner S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem. 1995;270(12):6856–6863. doi:10.1074/jbc.270.12.68567896833
  • Srinivasan VB, Rajamohan G, Gebreyes WA. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(12):5312–5316. doi:10.1128/AAC.00748-0919770280
  • Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother. 2017;93:580–588. doi:10.1016/j.biopha.2017.06.09228686972
  • Choudhury HG, Tong Z, Mathavan I, et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci U S A. 2014;111(25):9145–9150. doi:10.1073/pnas.132050611124920594
  • Verhalen B, Dastvan R, Thangapandian S, et al. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature. 2017;543(7647):738.28289287
  • Hürlimann LM, Hohl M, Seeger MA. Split tasks of asymmetric nucleotide‐binding sites in the heterodimeric ABC exporter EfrCD. FEBS J. 2017;284(11):1672–1687. doi:10.1111/febs.1406528417533
  • Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22(2):291–321.19366916
  • Woebking B, Reuter G, Shilling RA, et al. Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol. 2005;187(18):6363–6369. doi:10.1128/JB.187.18.6363-6369.200516159769
  • Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter inEscherichia coli. J Bacteriol. 2001;183(19):5639–5644. doi:10.1128/JB.183.19.5639-5644.200111544226
  • Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23(6):487. doi:10.1038/nsmb.321627273632
  • Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW, Murakami S. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun. 2017;8(1):1336. doi:10.1038/s41467-017-01399-229109439
  • Kuroda T, Tsuchiya TJ. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta. 2009;1794(5):763–768. doi:10.1016/j.bbapap.2008.11.01219100867
  • He X, Szewczyk P, Karyakin A, et al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature. 2010;467(7318):991.20861838
  • Su X-Z, Chen J, Mizushima T, Kuroda T, Tsuchiya TJ. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother. 2005;49(10):4362–4364. doi:10.1128/AAC.49.10.4362-4364.200516189122
  • West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 2001;26(6):369–376. doi:10.1016/s0968-0004(01)01852-711406410
  • Baranova N, Nikaido HJ. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol. 2002;184(15):4168–4176. doi:10.1128/jb.184.15.4168-4176.200212107134
  • Perron K, Caille O, Rossier C, Van Delden C, Dumas J-L, Köhler TJ. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem. 2004;279(10):8761–8768. doi:10.1074/jbc.M31208020014679195
  • Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 1996;19(1):1–24. doi:10.1111/j.1574-6976.1996.tb00251.x8916553
  • Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis VJ. Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system. Mol Microbiol. 2004;53(2):697–706. doi:10.1111/j.1365-2958.2004.04158.x15228545
  • Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382–402. doi:10.1128/CMR.19.2.382-402.200616614254
  • Hassan KA, Liu Q, Elbourne LDH, et al. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res Microbiol. 2018;169(7–8):450–454. doi:10.1016/j.resmic.2018.01.00129409983
  • Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother. 2006;59(6):1247–1260. doi:10.1093/jac/dkl46017145734
  • Lorenzi V, Muselli A, Bernardini AF, et al. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob Agents Chemother. 2009;53(5):2209–2211. doi:10.1128/AAC.00919-0819258278
  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler SJ. Bacterial persistence as a phenotypic switch. Science (New York, N.Y.). 2004;305(5690):1622–1625. doi:10.1126/science.1099390
  • Pu Y, Zhao Z, Li Y, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell. 2016;62(2):284–294.27105118
  • Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16:523–539. doi:10.1038/s41579-018-0048-630002505
  • Everett MJ, Jin YF, Ricci V, Piddock LJ. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob Agents Chemother. 1996;40(10):2380–2386.8891148
  • Zampieri M, Enke T, Chubukov V, Ricci V, Piddock L, Sauer UJ. Metabolic constraints on the evolution of antibiotic resistance. Mol Syst Biol. 2017;13(3):917.28265005
  • Bailey AM, Ivens A, Kingsley R, Cottell JL, Wain J, Piddock LJV. RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol. 2010;192(6):1607–1616. doi:10.1128/JB.01517-0920081028
  • Yao H, Shen Z, Wang Y, et al. Emergence of a potent multidrug efflux pump variant that enhances campylobacter resistance to multiple antibiotics. mBio. 2016;7(5):e01543–16. doi:10.1128/mBio.01543-1627651364
  • Ni W, Li Y, Guan J, et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2016;60(5):3215–3218. doi:10.1128/AAC.00248-1626953203
  • Aghamali M, Bialvaei AZ, Aghazadeh M, Asgharzadeh M, Kafil HS. Carbapenemase inhibitors. Rev Med Microbiol. 2017;28(3):104–113. doi:10.1097/MRM.0000000000000106
  • Pagès J-M, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med. 2005;11(8):382–389. doi:10.1016/j.molmed.2005.06.00615996519
  • Yılmaz Ç, Özcengiz G. Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol. 2017;133:43–62. doi:10.1016/j.bcp.2016.10.00527765485
  • Su X-Z, Chen J, Mizushima T, Kuroda T, Tsuchiya T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother. 2005;49(10):4362–4364. doi:10.1128/AAC.49.10.4362-4364.200516189122
  • Li L, Hassan KA, Brown MH, Paulsen IT. Rapid multiplexed phenotypic screening identifies drug resistance functions for three novel efflux pumps in Acinetobacter baumannii. J Antimicrob Chemother. 2016;71(5):1223–1232. doi:10.1093/jac/dkv46026832750
  • Roca I, Marti S, Espinal P, Martínez P, Gibert I, Vila J. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(9):4013–4014. doi:10.1128/AAC.00584-0919581458
  • Schneiders T, Findlay J, Amyes SGB. Efflux pumps in Acinetobacter baumannii In: Bergogne-Bérézin E, Friedman H, Bendinelli M, editors. Acinetobacter Biology and Pathogenesis. New York, NY: Springer US; 2008:105–127.
  • Fernández-Alarcón C, Miranda CD, Singer RS, et al. Detection of the floR gene in a diversity of florfenicol resistant gram-negative bacilli from Freshwater Salmon farms in chile. Zoonoses Public Health. 2010;57(3):181–188. doi:10.1111/jvb.2010.57.issue-319538451
  • Rajamohan G, Srinivasan VB, Gebreyes WA. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2010;65(9):1919–1925. doi:10.1093/jac/dkq19520573661
  • Hassan KA, Liu Q, Henderson PJF, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015;6(1):e01982–14. doi:10.1128/mBio.01982-1425670776
  • Lin M-F, Lin Y-Y, Tu C-C, Lan C-Y. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J Microbiol Immunol Infect. 2017;50(2):224–231. doi:10.1016/j.jmii.2015.04.00426055688
  • Pérez-Varela M, Corral J, Aranda J, Barbé J. Functional characterization of AbaQ, a novel efflux pump mediating quinolone resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2018;62(9):e00906–18. doi:10.1128/AAC.00906-1829941648