650
Views
14
CrossRef citations to date
0
Altmetric
Review

Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review

ORCID Icon, , , &
Pages 11-26 | Published online: 06 Jan 2020

References

  • Khosravani M, Dallal MMS, Norouzi M. marA efflux pump gene expression in Salmonella enteritidis strains treated with Artemisia tournefortiana hydroalcoholic extract and comparison with commercial efflux pump inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Arch Med Lab Sci. 2019;4:1.
  • Soltan Dallal M, Khalilian M, Masoumi Asl H, et al. Molecular epidemiology and antimicrobial resistance of Salmonella spp. Isolated from resident patients in Mazandaran Province, Northern Iran. J Food Qual Hazards Control. 2016;3(4):146–151.
  • Sayadnouri S, Dallal MS, Akbarzadeh S, Fard RMN. Evaluation of class 1 and 2 integrons and antibiotic resistance pattern in Salmonella enterica isolated from diarrheal food-borne outbreaks in Iran. J Food Qual Hazards Control. 2019. doi:10.18502/jfqhc.6.3.1384
  • Nasser A. Prevalence of sulfonamide resistance genes in Salmonella spp. isolated from Milad hospital of Tehran. Iran J Public Health. 2014;43(2):87.
  • Crump JA, Mintz ED. Global trends in typhoid and paratyphoid fever. Clin Infect Dis. 2010;50(2):241–246. doi:10.1086/64954120014951
  • Rivera-Chavez F, Baumler AJ. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu Rev Microbiol. 2015;69:31–48. doi:10.1146/annurev-micro-091014-10410826002180
  • Kaur J, Jain SK. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res. 2012;167(4):199–210. doi:10.1016/j.micres.2011.08.00121945101
  • Fardsanei F, Dallal MMS, Douraghi M, et al. Antimicrobial resistance, virulence genes and genetic relatedness of Salmonella enterica serotype Enteritidis isolates recovered from human gastroenteritis in Tehran, Iran. J Global Antimicrob Resist. 2018;12:220–226. doi:10.1016/j.jgar.2017.10.005
  • Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology. 2012;158(5):1147–1161. doi:10.1099/mic.0.058115-022422755
  • Galan JE. Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol. 2001;17:53–86. doi:10.1146/annurev.cellbio.17.1.5311687484
  • Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361. doi:10.1038/8637311276208
  • Kiss T, Morgan E, Nagy G. Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett. 2007;275(1):153–159. doi:10.1111/fml.2007.275.issue-117711458
  • Wagner C, Polke M, Gerlach RG, et al. Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica. Cell Microbiol. 2011;13(8):1286–1301. doi:10.1111/cmi.2011.13.issue-821729227
  • Gerlach RG, Claudio N, Rohde M, Jackel D, Wagner C, Hensel M. Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol. 2008;10(11):2364–2376. doi:10.1111/j.1462-5822.2008.01218.x18671822
  • Main-Hester KL, Colpitts KM, Thomas GA, Fang FC, Libby SJ. Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun. 2008;76(3):1024–1035. doi:10.1128/IAI.01224-0718160484
  • Wagner C, Polke M, Gerlach RG, et al. Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica. Cell Microbiol. 2011;13(8):1286–1301. doi:10.1111/j.1462-5822.2011.01621.x21729227
  • Latasa C, Roux A, Toledo-Arana A, et al. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol. 2005;58(5):1322–1339. doi:10.1111/j.1365-2958.2005.04907.x16313619
  • Romling U, Rohde M, Olsen A, Normark S, Reinkoster J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol. 2000;36(1):10–23. doi:10.1046/j.1365-2958.2000.01822.x10760159
  • González JF, Tucker L, Fitch J, Wetzel A, White P, Gunn JS. Human bile-mediated regulation of Salmonella curli fimbriae. J Bacteriol. 2019;JB.00055–00019.
  • Rosselin M, Virlogeux-Payant I, Roy C, et al. Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res. 2010;20(6):647. doi:10.1038/cr.2010.4520368731
  • Heffernan EJ, Reed S, Hackett J, Fierer J, Roudier C, Guiney D. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. J Clin Invest. 1992;90(3):953–964. doi:10.1172/JCI1159721522243
  • Wiedemann A, Mijouin L, Ayoub MA, et al. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion. FASEB J. 2016;30(12):4180–4191. doi:10.1096/fj.201600701R27609774
  • Wiedemann A, Rosselin M, Mijouin L, Bottreau E, Velge P. Involvement of c-Src tyrosine kinase upstream of class I phosphatidylinositol (PI) 3-kinases in Salmonella Enteritidis Rck protein-mediated invasion. J Biol Chem. 2012;287(37):31148–31154. doi:10.1074/jbc.M112.39213422810232
  • Lambert MA, Smith SG. The PagN protein of Salmonella enterica serovar Typhimurium is an adhesin and invasin. BMC Microbiol. 2008;8(1):142. doi:10.1186/1471-2180-8-14218778463
  • Lambert MA, Smith SG. The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett. 2009;297(2):209–216. doi:10.1111/j.1574-6968.2009.01666.x19552707
  • Lambert MA, Smith SGJ. The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett. 2009;297(2):209–216. doi:10.1111/j.1574-6968.2009.01666.x19552707
  • Prost LR, Miller SI. The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol. 2008;10(3):576–582. doi:10.1111/cmi.2008.10.issue-318182085
  • Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV–met interaction. Cell Microbiol. 2019;21(3):e12982.30426648
  • Chowdhury R, Mandal RS, Ta A, Das S. An AIL family protein promotes type three secretion system-1-independent invasion and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol. 2015;17(4):486–503. doi:10.1111/cmi.2015.17.issue-425308535
  • Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Bäumler AJ. Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol. 2005;57(1):196–211. doi:10.1111/j.1365-2958.2005.04666.x15948960
  • Kingsley RA, Santos RL, Keestra AM, Adams LG, Bäumler AJ. Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol. 2002;43(4):895–905. doi:10.1046/j.1365-2958.2002.02805.x11929540
  • Cooley MB, Miller WG, Mandrell RE. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157: h7and competition by Enterobacter asburiae. Appl Environ Microbiol. 2003;69(8):4915–4926. doi:10.1128/AEM.69.8.4915-4926.200312902287
  • Tan MSF, White AP, Rahman S, Dykes GA. Role of fimbriae, flagella and cellulose on the attachment of Salmonella typhimurium ATCC 14028 to plant cell wall models. PLoS One. 2016;11(6):e0158311. doi:10.1371/journal.pone.015831127355584
  • Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar Typhimurium to human cells. Can J Microbiol. 2004;50(9):719–727. doi:10.1139/w04-05615644926
  • Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev. 2004;17(1):14–56. doi:10.1128/CMR.17.1.14-56.200414726454
  • Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Front Cell Infect Microbiol. 2017;7:428. doi:10.3389/fcimb.2017.0042829034217
  • Wallis TS, Galyov EE. Molecular basis of Salmonella‐induced enteritis: microReview. Mol Microbiol. 2000;36(5):997–1005. doi:10.1046/j.1365-2958.2000.01892.x10844685
  • Jantsch J, Chikkaballi D, Hensel M. Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev. 2011;240(1):185–195. doi:10.1111/imr.2011.240.issue-121349094
  • Mason D, Mallo GV, Terebiznik MR, et al. Alteration of epithelial structure and function associated with PtdIns (4, 5) P2 degradation by a bacterial phosphatase. J Gen Physiol. 2007;129(4):267–283. doi:10.1085/jgp.20060965617389247
  • Knodler LA, Finlay BB, Steele-Mortimer O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem. 2005;280(10):9058–9064. doi:10.1074/jbc.M41258820015642738
  • Garcia-Gil A, Galan-Enriquez CS, Perez-Lopez A, Nava P, Alpuche-Aranda C, Ortiz-Navarrete V. SopB activates the Akt-YAP pathway to promote Salmonella survival within B cells. Virulence. 2018;9(1):1390–1402. doi:10.1080/21505594.2018.150966430103648
  • Kum WWS, Lo BC, Yu HB, Finlay BB. Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis. Infect Immun. 2011;79(7):2554. doi:10.1128/IAI.01235-1021555401
  • Bakowski MA, Braun V, Lam GY, et al. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe. 2010;7(6):453–462. doi:10.1016/j.chom.2010.05.01120542249
  • Truong D, Boddy KC, Canadien V, et al. Salmonella exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB. Cell Microbiol. 2018;20(10):e12938. doi:10.1111/cmi.v20.1030010242
  • Hernandez LD, Hueffer K, Wenk MR, Galán JE. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science. 2004;304(5678):1805. doi:10.1126/science.109818815205533
  • Mallo GV, Espina M, Smith AC, et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol. 2008;182(4):741–752. doi:10.1083/jcb.20080413118725540
  • Sana TG, Flaugnatti N, Lugo KA, et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc National Acad Sci. 2016;113(34):E5044–E5051. doi:10.1073/pnas.1608858113
  • Kaur J, Jain S. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res. 2012;167(4):199–210. doi:10.1016/j.micres.2011.08.00121945101
  • Hart PJ, O’Shaughnessy CM, Siggins MK, et al. Differential killing of Salmonella enterica serovar typhi by antibodies targeting Vi and lipopolysaccharide o:9 antigen. PLoS One. 2016;11(1):e0145945. doi:10.1371/journal.pone.014594526741681
  • Reid RR, Prodeus AP, Khan W, Hsu T, Rosen FS, Carroll MC. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J Immunol. 1997;159(2):970–975.9218618
  • Pickard D, Wain J, Baker S, et al. Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol. 2003;185(17):5055–5065. doi:10.1128/JB.185.17.5055-5065.200312923078
  • Seth-Smith HMB, Fookes MC, Okoro CK, et al. Structure, diversity, and mobility of the pathogenicity island 7 family of integrative and conjugative elements within enterobacteriaceae. J Bacteriol. 2012;194(6):1494.22247511
  • Zhang X-L, Tsui ISM, Yip CMC, et al. Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun. 2000;68(6):3067. doi:10.1128/IAI.68.6.3067-3073.200010816445
  • Winter SE, Winter MG, Thiennimitr P, et al. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 2009;74(1):175–193. doi:10.1111/mmi.2009.74.issue-119703107
  • Bajaj V, Hwang C, Lee CA. hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol. 1995;18(4):715–727. doi:10.1111/mmi.1995.18.issue-48817493
  • Hiyoshi H, Wangdi T, Lock G, et al. Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Rep. 2018;22(7):1787–1797. doi:10.1016/j.celrep.2018.01.01629444431
  • Sharma A, Qadri A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci U S A. 2004;101(50):17492–17497. doi:10.1073/pnas.040753610115576509
  • Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Bäumler AJ. The Vi capsular antigen of salmonella enterica serotype typhi reduces toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun. 2005;73(6):3367. doi:10.1128/IAI.73.6.3367-3374.200515908363
  • Hirose K, Ezaki T, Miyake M, et al. Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol Lett. 1997;147(2):259–265. doi:10.1111/j.1574-6968.1997.tb10251.x9119202
  • Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect Immun. 2011;79(10):4227. doi:10.1128/IAI.00040-1121768282
  • Nevola JJ, Laux DC, Cohen PS. In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its lipopolysaccharide-deficient mutant. Infect Immun. 1987;55(12):2884–2890.3316026
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71(1):635–700. doi:10.1146/annurev.biochem.71.110601.13541412045108
  • Murray GL, Attridge SR, Morona R. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol. 2006;188(7):2735–2739. doi:10.1128/JB.188.7.2735-2739.200616547065
  • Vaara M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother. 1993;37(11):2255. doi:10.1128/AAC.37.11.22558285603
  • Pawlak A, Rybka J, Dudek B, et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide O-antigen containing sialic acid. Int J Mol Sci. 2017;18:10. doi:10.3390/ijms18102022
  • Delgado MA, Mouslim C, Groisman EA. The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O‐antigen chain length determinant. Mol Microbiol. 2006;60(1):39–50. doi:10.1111/mmi.2006.60.issue-116556219
  • McCONNELL M, Wright A. Variation in the structure and bacteriophage-inactivating capacity of Salmonella anatum lipopolysaccharide as a function of growth temperature. J Bacteriol. 1979;137(2):746–751.422511
  • McClelland M, Sanderson KE, Clifton SW, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet. 2004;36(12):1268. doi:10.1038/ng147015531882
  • Verma N, Reeves P. Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae. J Bacteriol. 1989;171(10):5694. doi:10.1128/jb.171.10.5694-5701.19892793833
  • Vázquez-Torres A. Less is best in the convergent evolution of typhoidal Salmonella. Cell Host Microbe. 2018;23(2):151–153. doi:10.1016/j.chom.2018.01.00929447692
  • Knodler LA, Steele-Mortimer O. Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic. 2003;4(9):587–599. doi:10.1034/j.1600-0854.2003.00118.x12911813
  • Stebbins CE, Galan JE. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell. 2000;6(6):1449–1460. doi:10.1016/S1097-2765(00)00141-611163217
  • Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116(2):153–166. doi:10.1016/S0092-8674(03)01079-114744428
  • Semerdjieva S, Shortt B, Maxwell E, et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J Cell Biol. 2008;183(3):499–511. doi:10.1083/jcb.20080601618981233
  • Steele-Mortimer O, Meresse S, Gorvel JP, Toh BH, Finlay BB. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol. 1999;1(1):33–49. doi:10.1046/j.1462-5822.1999.00003.x11207539
  • Martinez-Lorenzo MJ, Meresse S, de Chastellier C, Gorvel JP. Unusual intracellular trafficking of Salmonella typhimurium in human melanoma cells. Cell Microbiol. 2001;3(6):407–416. doi:10.1046/j.1462-5822.2001.00123.x11422083
  • Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 2007;12(5):671–682. doi:10.1016/j.devcel.2007.04.00517488620
  • Scott CC, Cuellar-Mata P, Matsuo T, Davidson HW, Grinstein S. Role of 3-phosphoinositides in the maturation of Salmonella-containing vacuoles within host cells. J Biol Chem. 2002;277(15):12770–12776. doi:10.1074/jbc.M11039920011821391
  • Sindhwani A, Arya SB, Kaur H, Jagga D, Tuli A, Sharma M. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathog. 2017;13(10):e1006700.29084291
  • Mills IG, Jones AT, Clague MJ. Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr Biol. 1998;8(15):881–884. doi:10.1016/S0960-9822(07)00351-X9705936
  • Méresse S, Steele‐Mortimer O, Finlay BB, Gorvel JP. The rab7 GTPase controls the maturation of Salmonella typhimurium‐containing vacuoles in HeLa cells. EMBO J. 1999;18(16):4394–4403. doi:10.1093/emboj/18.16.439410449405
  • Kaniuk NA, Canadien V, Bagshaw RD, et al. Salmonella exploits Arl8B‐directed kinesin activity to promote endosome tubulation and cell‐to‐cell transfer. Cell Microbiol. 2011;13(11):1812–1823.21824248
  • Harrison RE, Brumell JH, Khandani A, et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell. 2004;15(7):3146–3154. doi:10.1091/mbc.e04-02-009215121880
  • Bujny MV, Ewels PA, Humphrey S, Attar N, Jepson MA, Cullen PJ. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci. 2008;121(12):2027–2036.18505799
  • McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ, Holden DW. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science. 2012;338(6109):963–967. doi:10.1126/science.122703723162002
  • Carlton J, Bujny M, Peter BJ, et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol. 2004;14(20):1791–1800. doi:10.1016/j.cub.2004.09.07715498486
  • Chakraborty S, Mizusaki H, Kenney LJ. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection. PLoS Biol. 2015;13(4):e1002116. doi:10.1371/journal.pbio.100211625875623
  • Krieger V, Liebl D, Zhang Y, et al. Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog. 2014;10(9):e1004374. doi:10.1371/journal.ppat.100437425254663
  • Hannemann S, Gao B, Galán JE. Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathog. 2013;9(10):e1003668. doi:10.1371/journal.ppat.100366824098123
  • Tuli A, Sharma M. How to do business with lysosomes: Salmonella leads the way. Curr Opin Microbiol. 2019;47:1–7. doi:10.1016/j.mib.2018.10.00330391777
  • Drecktrah D, Levine‐Wilkinson S, Dam T, et al. Dynamic behavior of Salmonella‐induced membrane tubules in epithelial cells. Traffic. 2008;9(12):2117–2129. doi:10.1111/j.1600-0854.2008.00830.x18785994
  • Perrett CA, Zhou D. Salmonella type III effector SopB modulates host cell exocytosis. Emerging Microbes Infect. 2013;2(1):1–6. doi:10.1038/emi.2013.37
  • Santos JC, Enninga J. At the crossroads: communication of bacteria-containing vacuoles with host organelles. Cell Microbiol. 2016;18(3):330–339. doi:10.1111/cmi.v18.326762760
  • Santos JC, Duchateau M, Fredlund J, et al. The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth. Cell Microbiol. 2015;17(12):1699–1720. doi:10.1111/cmi.1247526084942
  • D’Costa VM, Braun V, Landekic M, et al. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep. 2015;12(9):1508–1518. doi:10.1016/j.celrep.2015.07.06326299973
  • McEwan DG, Richter B, Claudi B, et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe. 2015;17(1):58–71. doi:10.1016/j.chom.2014.11.01125500191
  • Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol. 2006;62(3):786–793. doi:10.1111/mmi.2006.62.issue-317076670
  • McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–124. doi:10.1016/j.mib.2008.12.00119157959
  • Kolodziejek AM, Altura MA, Fan J, et al. Salmonella translocated effectors recruit OSBP1 to the phagosome to promote vacuolar membrane integrity. Cell Rep 2019;27:2147–2156. doi:10.2139/ssrn.318841531091452
  • Abrahams GL, Muller P, Hensel M. Functional dissection of SseF, a type III effector protein involved in positioning the salmonella-containing vacuole. Traffic. 2006;7(8):950–965. doi:10.1111/j.1600-0854.2006.00454.x16800847
  • Yu XJ, Liu M, Holden DW. Salmonella effectors SseF and SseG interact with mammalian protein ACBD3 (GCP60) to anchor salmonella-containing vacuoles at the golgi network. MBio. 2016;7:4. doi:10.1128/mBio.00474-16
  • Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R, Holden DW. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog. 2012;8(6):e1002743. doi:10.1371/journal.ppat.100274322719249
  • Domingues L, Ismail A, Charro N, et al. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell Microbiol. 2016;18(7):949–969. doi:10.1111/cmi.1255826676327
  • Bayer-Santos E, Durkin CH, Rigano LA, et al. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe. 2016;20(5):584–595. doi:10.1016/j.chom.2016.10.00727832589
  • Odendall C, Rolhion N, Forster A, et al. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe. 2012;12(5):657–668. doi:10.1016/j.chom.2012.09.01123159055
  • Freeman JA, Rappl C, Kuhle V, Hensel M, Miller SI. SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC. J Bacteriol. 2002;184(18):4971–4980. doi:10.1128/JB.184.18.4971-4980.200212193612
  • Bakowski MA, Braun V, Brumell JH. Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic. 2008;9(12):2022–2031. doi:10.1111/tra.2008.9.issue-1218778407
  • Jackson LK, Nawabi P, Hentea C, Roark EA, Haldar K. The Salmonella virulence protein SifA is a G protein antagonist. Proc National Acad Sci. 2008;105(37):14141–14146. doi:10.1073/pnas.0801872105
  • Brawn LC, Hayward RD, Koronakis V. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe. 2007;1(1):63–75. doi:10.1016/j.chom.2007.02.00118005682
  • Freeman JA, Ohl ME, Miller SI. The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun. 2003;71(1):418–427. doi:10.1128/IAI.71.1.418-427.200312496192
  • Núñez-Hernández C, Alonso A, Pucciarelli MG, Casadesús J, García-del Portillo F. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts. Infect Immun. 2014;82(1):221–232. doi:10.1128/IAI.01304-1324144726
  • Abrahams GL, Hensel M. Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol. 2006;8(5):728–737. doi:10.1111/cmi.2006.8.issue-516611223
  • Henry T, Couillault C, Rockenfeller P, et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc National Acad Sci. 2006;103(36):13497–13502. doi:10.1073/pnas.0605443103
  • Knodler LA, Celli J, Hardt W-D, Vallance BA, Yip C, Finlay BB. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol. 2002;43(5):1089–1103. doi:10.1046/j.1365-2958.2002.02820.x11918798
  • Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107(7):3076–3080. doi:10.1073/pnas.091308710720133635
  • Reyes Ruiz VM, Ramirez J, Naseer N, et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2017;114(50):13242–13247. doi:10.1073/pnas.171043311429180436
  • Karki R, Lee E, Place D, et al. IRF8 regulates transcription of naips for NLRC4 inflammasome activation. Cell. 2018;173(4):920–933.e913. doi:10.1016/j.cell.2018.02.05529576451
  • Cummings LA, Barrett SLR, Wilkerson WD, Fellnerova I, Cookson BT. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174(12):7929–7938. doi:10.4049/jimmunol.174.12.792915944299
  • Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11:1136. doi:10.1038/ni.196021057511
  • Humphries F, Yang S, Wang B, Moynagh P. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 2015;22(2):225. doi:10.1038/cdd.2014.12625146926
  • Behnsen J, Perez-Lopez A, Nuccio S-P, Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol. 2015;36(2):112–120. doi:10.1016/j.it.2014.12.00325582038
  • McCoy MW, Moreland SM, Detweiler CS. Hemophagocytic macrophages in murine typhoid fever have an anti-inflammatory phenotype. Infect Immun. 2012;80(10):3642–3649. doi:10.1128/IAI.00656-1222868497
  • Libby SJ, Lesnick M, Hasegawa P, Weidenhammer E, Guiney DG. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol. 2000;2(1):49–58. doi:10.1046/j.1462-5822.2000.00030.x11207562
  • Browne SH, Lesnick ML, Guiney DG. Genetic requirements for salmonella-induced cytopathology in human monocyte-derived macrophages. Infect Immun. 2002;70(12):7126–7135. doi:10.1128/IAI.70.12.7126-7135.200212438395
  • Haneda T, Ishii Y, Shimizu H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol. 2012;14(4):485–499. doi:10.1111/j.1462-5822.2011.01733.x22188134
  • Mazurkiewicz P, Thomas J, Thompson JA, et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol. 2008;67(6):1371–1383. doi:10.1111/mmi.2008.67.issue-618284579
  • Singh Y, Saxena A, Kumar R, Saxena MK. Virulence system of salmonella with special reference to Salmonella enterica. Salmonella. 2018;41.
  • Kim Y-G, Kim J-H, Kim K-J. Crystal structure of the Salmonella enterica serovar typhimurium virulence factor SrfJ, a glycoside hydrolase family enzyme. J Bacteriol. 2009;191(21):6550–6554. doi:10.1128/JB.00641-0919717598
  • Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348(Pt 2):241–255. doi:10.1042/bj348024110816416
  • Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt W-D. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem. 2001;276(36):34035–34040. doi:10.1074/jbc.M10060920011440999
  • Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93(5):815–826. doi:10.1016/S0092-8674(00)81442-79630225
  • Keestra AM, Winter MG, Auburger JJ, et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature. 2013;496(7444):233. doi:10.1038/nature1202523542589
  • Johnson R, Byrne A, Berger CN, et al. The type III secretion system effector SptP of Salmonella enterica serovar Typhi. J Bacteriol. 2017;199(4):e00647–e00616. doi:10.1128/JB.00647-1627920299
  • Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–183. doi:10.1210/edrv.22.2.042811294822
  • Lin SL, Le TX, Cowen DS. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol. 2003;5(4):267–275. doi:10.1046/j.1462-5822.2003.t01-1-00274.x12675684
  • Arricau N, Hermant D, Waxin H, Popoff M. Molecular characterization of the Salmonella typhi StpA protein that is related to both Yersinia YopE cytotoxin and YopH tyrosine phosphatase. Res Microbiol. 1997;148(1):21–26. doi:10.1016/S0923-2508(97)81896-79404501
  • Sabbagh SC, Forest CG, Lepage C, Leclerc J-M, Daigle F. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett. 2010;305(1):1–13. doi:10.1111/fml.2010.305.issue-120146749
  • McIntosh A, Meikle LM, Ormsby MJ, et al. SipA activation of caspase-3 is a decisive mediator of host cell survival at early stages of Salmonella enterica serovar Typhimurium infection. Infect Immun. 2017;85(9):e00393–e00317. doi:10.1128/IAI.00393-1728630067
  • Singh PK, Kapoor A, Lomash RM, et al. Salmonella SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. J Cell Biol. 2018;217(12):4199. doi:10.1083/jcb.20180215530309979
  • Xu J, Luo F, Zhang Z, et al. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep. 2013;3(5):1414–1421. doi:10.1016/j.celrep.2013.03.01023643538
  • Hallstrom KN, McCormick BA. The type three secreted effector SipC regulates the trafficking of PERP during Salmonella infection. Gut Microbes. 2016;7(2):136–145. doi:10.1080/19490976.2015.112862627078059
  • Hallstrom KN, Srikanth C, Agbor TA, et al. PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation. Cell Microbiol. 2015;17(6):843–859. doi:10.1111/cmi.2015.17.issue-625486861
  • Lara-Tejero M, Galán JE. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun. 2009;77(7):2635–2642. doi:10.1128/IAI.00077-0919364837
  • Eswarappa SM, Janice J, Nagarajan AG, et al. Differentially evolved genes of Salmonella pathogenicity islands: insights into the mechanism of host specificity in Salmonella. PLoS One. 2008;3(12):e3829. doi:10.1371/journal.pone.000382919050757
  • Shivcharan S, Yadav J, Qadri A. Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci Rep. 2018;8(1):15501. doi:10.1038/s41598-018-33319-930341337
  • Knodler LA, Nair V, Steele-Mortimer O. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One. 2014;9(1):e84681. doi:10.1371/journal.pone.008468124400108
  • Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe. 2008;3(4):233–244. doi:10.1016/j.chom.2008.02.01618407067
  • Fedor Y, Vignard J, Nicolau-Travers ML, et al. From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the Escherichia coli cytolethal distending toxin. Cell Microbiol. 2013;15(1):1–15. doi:10.1111/cmi.1202822978660
  • Guidi R, Guerra L, Levi L, et al. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol. 2013;15(1):98–113. doi:10.1111/cmi.1203422998585
  • Del Bel Belluz L, Guidi R, Pateras IS, et al. The typhoid toxin promotes host survival and the establishment of a persistent asymptomatic infection. PLoS Pathog. 2016;12(4):e1005528–e1005528. doi:10.1371/journal.ppat.100552827055274
  • Chong A, Lee S, Yang Y-A, Song J. The role of typhoid toxin in Salmonella typhi virulence. Yale J Biol Med. 2017;90(2):283–290.28656014
  • Haghjoo E, Galan JE. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A. 2004;101(13):4614–4619. doi:10.1073/pnas.040093210115070766
  • Spanò S, Ugalde JE, Galán JE. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe. 2008;3(1):30–38.18191792
  • Eichelberg K, Galán JE. Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and HilA. Infect Immun. 1999;67(8):4099.10417179
  • Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol. 2007;10(1):24–29. doi:10.1016/j.mib.2006.12.00217208038
  • Olekhnovich IN, Kadner RJ. Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol. 2006;357(2):373–386. doi:10.1016/j.jmb.2006.01.00716443238
  • Fabrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26(2):308–341.23554419
  • Ellermeier CD, Ellermeier JR, Slauch JM. HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol. 2005;57(3):691–705. doi:10.1111/mmi.2005.57.issue-316045614
  • Kenney LJ. The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol. 2019;47:45–51. doi:10.1016/j.mib.2018.11.00630529007
  • Cheeseman G, Fuller R. Changes in the pH activity profile of the lysine decarboxylase during incubation of Escherichia coli. J Appl Bacteriol. 1968;31(2):253–258. doi:10.1111/jam.1968.31.issue-24882105
  • Crawford RW, Rosales-Reyes R, de la Luz Ramírez-aguilar M, Chapa-Azuela O, Alpuche-Aranda C, Gunn JS. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc National Acad Sci. 2010;107(9):4353–4358. doi:10.1073/pnas.1000862107
  • Quinn HJ, Cameron AD, Dorman CJ. Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of Salmonella Typhimurium and Escherichia coli in the acid stress response. PLoS Genet. 2014;10(3):e1004215. doi:10.1371/journal.pgen.100421524603618
  • Bustamante VH, Martínez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL. HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc National Acad Sci. 2008;105(38):14591–14596. doi:10.1073/pnas.0801205105
  • Pérez-Morales D, Banda MM, Chau NYE, et al. The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella. PLoS Pathog. 2017;13(7):e1006497. doi:10.1371/journal.ppat.100649728704543
  • Gantois I, Ducatelle R, Pasmans F, et al. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol. 2006;72(1):946. doi:10.1128/AEM.72.1.946-949.200616391141
  • Bronner DN, Faber F, Olsan EE, et al. Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease. Cell Host Microbe. 2018;23(2):266–273.e264. doi:10.1016/j.chom.2018.01.00429447698
  • Wick MJ. The role of dendritic cells during Salmonella infection. Curr Opin Immunol. 2002;14(4):437–443. doi:10.1016/S0952-7915(02)00364-312088677
  • Cheminay C, Schoen M, Hensel M, et al. Migration of Salmonella typhimurium –harboring bone marrow–derived dendritic cells towards the chemokines CCL19 and CCL21. Microb Pathog. 2002;32(5):207–218. doi:10.1006/mpat.2002.049712071677
  • Carden SE, Walker GT, Honeycutt J, et al. Pseudogenization of the secreted effector gene sseI confers rapid systemic dissemination of S. Typhimurium ST313 within migratory dendritic cells. Cell Host Microbe. 2017;21(2):182–194. doi:10.1016/j.chom.2017.01.00928182950
  • Reyes M, Fisher S, McLaughlin LM, et al. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol. 2014;6(4):438–449. doi:10.1039/C3IB40177D
  • Riol-Blanco L, Sanchez-Sanchez N, Torres A, et al. The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol. 2005;174(7):4070–4080. doi:10.4049/jimmunol.174.7.407015778365
  • Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol. 2003;48(2):401–415. doi:10.1046/j.1365-2958.2003.t01-1-03456.x12675800
  • McLaughlin LM, Govoni GR, Gerke C, et al. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog. 2009;5(11):e1000671. doi:10.1371/journal.ppat.100067119956712
  • Arpaia N, Godec J, Lau L, et al. TLR signaling is required for Salmonella typhimurium virulence. Cell. 2011;144(5):675–688. doi:10.1016/j.cell.2011.01.03121376231
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987. doi:10.1038/ni111215454922
  • Hsu LC, Park JM, Zhang K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature. 2004;428(6980):341–345. doi:10.1038/nature0240515029200
  • Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science. 2002;297(5589):2048–2051. doi:10.1126/science.107316312202685
  • Forstner J, Oliver M, Sylvester F. Production, structure and biologic relevance of gastrointestinal mucins. Infect Gastrointest Tract. 1995;1995:71–88.
  • Vimal DB, Khullar M, Gupta S, Ganguly NK. Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem. 2000;204(1–2):107–117. doi:10.1023/A:100701531203610718631
  • Arabyan N, Weis AM, Huang BC, Weimer BC. Implication of sialidases in Salmonella infection: genome release of sialidase knockout strains from Salmonella enterica serovar typhimurium LT2. Genome Announc. 2017;5(19):e00341–e00317. doi:10.1128/genomeA.00341-1728495784
  • Songhet P, Barthel M, Stecher B, et al. Stromal IFN-γR-signaling modulates goblet cell function during Salmonella typhimurium infection. PLoS One. 2011;6(7):e22459. doi:10.1371/journal.pone.002245921829463
  • Johansson C, Ingman M, Wick MJ. Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella. Microb Pathog. 2006;41(2–3):49–58. doi:10.1016/j.micpath.2006.03.00416782300
  • Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 2010;207(8):1745. doi:10.1084/jem.2010025720603313
  • De Groote MA, Ochsner UA, Shiloh MU, et al. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A. 1997;94(25):13997–14001. doi:10.1073/pnas.94.25.139979391141
  • Godinez I, Raffatellu M, Chu H, et al. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype typhimurium in the intestine. Infect Immun. 2009;77(1):387.18955477
  • Zindl CL, Lai J-F, Lee YK, et al. IL-22–producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc National Acad Sci. 2013;110(31):12768–12773. doi:10.1073/pnas.1300318110
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–341. doi:10.1016/j.immuni.2009.08.00119682929
  • Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: a neutrophil problem? J Leukoc Biol. 2019;105(4):645–655. doi:10.1002/jlb.2019.105.issue-430570786
  • Corbin BD, Seeley EH, Raab A, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008;319(5865):962. doi:10.1126/science.115244918276893
  • Diaz-Ochoa Vladimir E, Lam D, Lee Carlin S, et al. Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe. 2016;19(6):814–825. doi:10.1016/j.chom.2016.05.00527281571
  • Lin D, Kim B, Slauch JM. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar typhimurium. Microbiology. 2009;155(Pt 12):4014–4024. doi:10.1099/mic.0.032904-019797361