1,708
Views
53
CrossRef citations to date
0
Altmetric
Review

How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections

, , , ORCID Icon, , & show all
Pages 45-61 | Published online: 07 Jan 2020

References

  • Rex JH, Talbot GH, Goldberger MJ, et al. Progress in the fight against multidrug-resistant bacteria 2005–2016: modern noninferiority trial designs enable antibiotic development in advance of epidemic bacterial resistance. Clin Infect Dis. 2017;65:141–146. doi:10.1093/cid/cix24629017263
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–327. doi:10.1016/S1473-3099(17)30753-329276051
  • Bahramian A, Shariati A, Azimi T, et al. First report of New Delhi metallo-β-lactamase-6 (NDM-6) among Klebsiella pneumoniae ST147 strains isolated from dialysis patients in Iran. Infect Genet Evol. 2019b;69:142–145. doi:10.1016/j.meegid.2019.01.03030684646
  • Freire-Moran L, Aronsson B, Manz C, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—time to react is now. Drug Resist Updat. 2011;14:118–124. doi:10.1016/j.drup.2011.02.00321435939
  • Jain S. Emergence of colistin resistance among gram negative bacteria in urinary tract infections from super specialty hospital of North India. Int J Infect Dis. 2018;73:133. doi:10.1016/j.ijid.2018.04.3716
  • Mohebi S, Hossieni Nave H, Norouzi A, Kandehkar Gharaman M, Taati Moghadam M. Detection of extended spectrum beta lactamases on class I integron in escherichia coli isolated from clinical samples. J Mazandaran Univ Med Sci. 2016;26:66–76.
  • Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:S14459. doi:10.4137/PMC.S14459
  • Hadizadeh M, Norouzi A, Taghadosi R, et al. Prevalence of qnr, intI, and intII genes in extendedspectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from clinical samples in Iran. Trop J Pharm Res. 2017;16:141–147.
  • Yang Y-S, Wei W, Hu X-X, et al. Evolution and antibacterial evaluation of 8-hydroxy-cycloberberine derivatives as a novel family of antibacterial agents against MRSA. Molecules. 2019;24:984. doi:10.3390/molecules24050984
  • Boluki E, Kazemian H, Peeridogaheh H, et al. Antimicrobial activity of photodynamic therapy in combination with colistin against a pan-drug resistant Acinetobacter baumannii isolated from burn patient. Photodiagnosis Photodyn Ther. 2017;18:1–5. doi:10.1016/j.pdpdt.2017.01.00328088439
  • Khan SN, Khan AU. Breaking the spell: combating multidrug resistant ‘superbugs’. Front Microbiol. 2016;7:174. doi:10.3389/fmicb.2016.0017426925046
  • Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol. 2019;234:14689–14708. doi:10.1002/jcp.v234.9
  • Wright GD, Sutherland AD. New strategies for combating multidrug-resistant bacteria. Trends Mol Med. 2007;13:260–267. doi:10.1016/j.molmed.2007.04.00417493872
  • Burrowes B, Harper DR, Anderson J, Mcconville M, Enright MC. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther. 2011;9:775–785. doi:10.1586/eri.11.9021905786
  • Kamal F, Dennis JJ. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol. 2014;02850–14.
  • Knezevic P, Curcin S, Aleksic V, Petrusic M, Vlaski L. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol. 2013;164:55–60. doi:10.1016/j.resmic.2012.08.00823000091
  • Mapes AC, Trautner BW, Liao KS, Ramig RF. Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage. 2016;6:e1096995. doi:10.1080/21597081.2015.109699527144083
  • Yin S, Huang G, Zhang Y, et al. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem. 2017;44:2337–2345. doi:10.1159/00048611729258062
  • Hankin EH. L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur. 1896;10:11.
  • Twort FW. Further investigations on the nature of ultra-microscopic viruses and their cultivation. Epidemiol Infect. 1936;36:204–235.
  • D’Herelle M. Sur un microbe invisible antagoniste des bacilles dysentériques. Acta Kravsi; 1961.
  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1:66–85. doi:10.4161/bact.1.2.1584522334863
  • Gelman D, Eisenkraft A, Chanishvili N, Nachman D, Glazer SC, Hazan R. The history and promising future of phage therapy in the military service. J Trauma Acute Care Surg. 2018;85:S18–S26. doi:10.1097/TA.000000000000180929370056
  • Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74:277–283. doi:10.1007/s00284-016-1166-x27896482
  • Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13:777. doi:10.1038/nrmicro356426548913
  • Kutter E, Vos DE, Gvasalia D, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11:69–86. doi:10.2174/13892011079072540120214609
  • Wittebole X, Roock DE, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5:226–235. doi:10.4161/viru.2599123973944
  • Pieterse L, Powers A, Pride D, Van Onselen L, Leone GE, Richardson PE. Investigating the lytic staphylococcus aureus bacteriophage reservoir amongst a south carolina university population: discovery, characterization, and identification of a potential bacteriophage treatment for methicillin-resistant staphylococcus aureus. J S C Acad Sci. 2018;16:8.
  • Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA. Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One. 2015;10:e0124280. doi:10.1371/journal.pone.012428025909449
  • Pires DP, Boas DV, Sillankorva S, Azeredo J. Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol. 2015;00385–15.
  • Lepelletier D, Berthelot P, Lucet J-C, et al. French recommendations for the prevention of ‘emerging extensively drug-resistant bacteria’(eXDR) cross-transmission. J Hosp Infect. 2015;90:186–195. doi:10.1016/j.jhin.2015.04.00225986165
  • Tan SY, Tatsumura Y. Alexander Fleming (1881–1881): discoverer of penicillin. Singapore medical journal. 2015;56:399.
  • Bodier-Montagutelli E, Morello E, L’Hostis G, et al. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv. 2017;14:959–972. doi:10.1080/17425247.2017.125232927776446
  • Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20:5286–5298. doi:10.3390/molecules2004528625812150
  • Blaskovich MA, Pitt ME, Elliott AG, Cooper MA. Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Rev Anti Infect Ther. 2018;16:485–499. doi:10.1080/14787210.2018.148324029848132
  • Dorval Courchesne NM, Parisien A, Lan CQ. Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol. 2009;3:37–45. doi:10.2174/18722080978717267819149721
  • Hagens S, Loessner MJ. Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol. 2007;76:513–519. doi:10.1007/s00253-007-1031-817554535
  • Nagel TE, Chan BK, De Vos D, et al. The developing world urgently needs phages to combat pathogenic bacteria. Front Microbiol. 2016;7:882. doi:10.3389/fmicb.2016.0088227375602
  • Lood R, Winer BY, Pelzek AJ, et al. Novel phage lysins capable of killing the multidrug resistant Gram-negative bacterium Acinetobacter baumannii in a mouse sepsis model. Antimicrob Agents Chemother. 2015;04641–14.
  • Nakonieczna A, Cooper CJ, Gryko R. Bacteriophages and bacteriophage‐derived endolysins as potential therapeutics to combat Gram‐positive spore forming bacteria. J Appl Microbiol. 2015;119:620–631. doi:10.1111/jam.1288126109320
  • Pereira C, Moreirinha C, Teles L, et al. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol. 2017;61:102–112. doi:10.1016/j.fm.2016.09.00327697159
  • Pabary R, Singh C, Morales S, et al. Anti-pseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother. 2015;01426–15.
  • Górski A, Międzybrodzki R, Weber-Dąbrowska B, et al. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;7:1515. doi:10.3389/fmicb.2016.0151527725811
  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 2015;23:185–191. doi:10.1016/j.tim.2015.01.00625708933
  • Shen G-H, Wang J-L, Wen F-S, et al. Isolation and characterization of φkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS One. 2012;7:e46537. doi:10.1371/journal.pone.004653723071586
  • Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363.
  • Woźnica WM, Bigos J, Łobocka MB. Lysis of bacterial cells in the process of bacteriophage release–canonical and newly discovered mechanisms. Postepy Hig Med Dosw (Online). 2015;69:114–126.25614679
  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins–application approaches. Curr Med Chem. 2015;22:1757–1773. doi:10.2174/092986732266615020915285125666799
  • Dewey JS, Savva CG, White RL, Vitha S, Holzenburg A, Young R. Micron-scale holes terminate the phage infection cycle. Proc Natl Acad Sci. 2010;107:2219–2223. doi:10.1073/pnas.091403010720080651
  • Shi Y, Yan Y, Ji W, et al. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J. 2012;9:70. doi:10.1186/1743-422X-9-7022436471
  • Pang T, Savva CG, Fleming KG, Struck DK, Young R. Structure of the lethal phage pinhole. Proc Natl Acad Sci. 2009;106:18966–18971. doi:10.1073/pnas.090794110619861547
  • Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett. 2008;287:22–33. doi:10.1111/fml.2008.287.issue-118673393
  • Linden SB, Zhang H, Heselpoth RD, et al. Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol. 2015;99:741–752. doi:10.1007/s00253-014-5930-125038926
  • Tran TA, Struck DK, Young R. Periplasmic domains define holin-antiholin interactions in T4 lysis inhibition. J Bacteriol. 2005;187:6631–6640. doi:10.1128/JB.187.19.6631-6640.200516166524
  • Catalao MJ, Gil F, Moniz-Pereira J, Sao-Jose C, Pimentel M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev. 2013;37:554–571. doi:10.1111/1574-6976.1200623043507
  • Frias MJ, Melo-Cristino J, Ramirez M. The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol. 2009;191:5428–5440. doi:10.1128/JB.00477-0919581370
  • De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R. Pseudomonas predators: understanding and exploiting phage–host interactions. Nat Rev Microbiol. 2017;15:517. doi:10.1038/nrmicro.2017.6128649138
  • Rozema EA, Stephens TP, Bach SJ, et al. Oral and rectal administration of bacteriophages for control of Escherichia coli O157: H7 in feedlot cattle. J Food Prot. 2009;72:241–250. doi:10.4315/0362-028X-72.2.24119350968
  • Ryan EM, Gorman SP, Donnelly RF, Gilmore BF. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol. 2011;63:1253–1264. doi:10.1111/j.2042-7158.2011.01324.x21899540
  • Vieira A, Silva Y, Cunha A, Gomes N, Ackermann H-W, Almeida A. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis. 2012;31:3241–3249. doi:10.1007/s10096-012-1691-x22777594
  • Regeimbal JM, Jacobs AC, Corey BW, et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from A. baumannii wound infections. Antimicrob Agents Chemother. 2016;02877–15.
  • Jado I, López R, García E, Fenoll A, Casal J, García P. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother. 2003;52:967–973. doi:10.1093/jac/dkg48514613958
  • Biswas B, Adhya S, Washart P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70:204–210. doi:10.1128/IAI.70.1.204-210.200211748184
  • Vinodkumar C, Kalsurmath S, Neelagund Y. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol. 2008;51:360. doi:10.4103/0377-4929.4251118723958
  • Danelishvili L, Young LS, Bermudez LE. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist. 2006;12:1–6. doi:10.1089/mdr.2006.12.116584300
  • Deng L, Yang Z, Gong Y, et al. Therapeutic effect of phages on extensively drug-resistant Acinetobacter baumannii-induced sepsis in mice. Zhonghua Shao Shang Za Zhi. 2016;32:523–528. doi:10.3760/cma.j.issn.1009-2587.2016.09.00327647067
  • Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One. 2011;6:e16963.21347240
  • Schooley RT, Biswas B, Gill JJ, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61:e00954–17. doi:10.1128/AAC.00954-1728807909
  • Ooi ML, Drilling AJ, Morales S, et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019;145:723. doi:10.1001/jamaoto.2019.1191
  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25:S27–S33. doi:10.12968/jowc.2016.25.Sup7.S2726949862
  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;2018:60–66. doi:10.1093/emph/eoy00529588855
  • Jennes S, Merabishvili M, Soentjens P, et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit Care. 2017;21:129. doi:10.1186/s13054-017-1709-y28583189
  • Letkiewicz S, Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia Microbiol (Praha). 2009;54:457. doi:10.1007/s12223-009-0064-z19937220
  • Rhoads D, Wolcott R, Kuskowski MA, Wolcott B, Ward L, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a Phase I safety trial. J Wound Care. 2009;18:237–243. doi:10.12968/jowc.2009.18.6.4280119661847
  • Wright A, Hawkins C, Änggård E, Harper D. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34:349–357. doi:10.1111/coa.2009.34.issue-419673983
  • Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71:2066–2070. doi:10.1093/jac/dkw27427342545
  • Azimi T, Shariati A, Fallah F, et al. Mycobacterium tuberculosis genotyping using MIRU-VNTR typing. J Mazandaran Univ Med Sci. 2017;27:40–48.
  • Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006;55:1619–1629. doi:10.1099/jmm.0.46747-017108263
  • Magiorakos AP, Srinivasan A, Carey R, et al. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Siegel JD, Rhinehart E, Jackson M, Chiarello L. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35:S165–S193. doi:10.1016/j.ajic.2007.10.00618068814
  • Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis. 2008;46:1121–1122. doi:10.1086/58799618444833
  • Kuo L-C, Teng L-J, Yu C-J, Ho S-W, Hsueh P-R. Dissemination of a clone of unusual phenotype of pandrug-resistant Acinetobacter baumannii at a university hospital in Taiwan. J Clin Microbiol. 2004;42:1759–1763. doi:10.1128/jcm.42.4.1759-1763.200415071042
  • Kuo L-C, Yu C-J, Lee L-N, et al. Clinical features of pandrug-resistant Acinetobacter baumannii bacteremia at a university hospital in Taiwan. J Formos Med Assoc. 2003;102:601–606.14625603
  • Bahramian A, Khoshnood S, Shariati A, Doustdar F, Chirani AS, Heidary M. Molecular characterization of the pilS2 gene and its association with the frequency of Pseudomonas aeruginosa plasmid pKlc102 and PaPI-1 pathogenicity island. Infect Drug Resist. 2019a;12:221. doi:10.2147/IDR.S18852730666137
  • Theuretzbacher U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol. 2017;39:106–112. doi:10.1016/j.mib.2017.10.02829154024
  • Shariati A, Azimi T, Ardebili A, et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018;21:75–80. doi:10.1016/j.nmni.2017.10.01329234497
  • Talbot GH, Bradley J, Edwards JE JR, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin Infect Dis. 2006;42:657–668. doi:10.1086/49981916447111
  • Dorman SE, Chaisson RE. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med. 2007;13:295. doi:10.1038/nm0307-29517342143
  • Sebaihia M, Wren BW, Mullany P, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 2006;38:779. doi:10.1038/ng183016804543
  • Ardehali SH, Azimi T, Fallah F, Owrang M, Aghamohammadi N, Azimi L. Role of efflux pumps in reduced susceptibility to tigecycline in Acinetobacter baumannii. New Microbes New Infect. 2019;30.
  • Mcgowan JE JR. Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Infect Control. 2006;34:S29–S37. doi:10.1016/j.ajic.2006.05.22616813979
  • Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–166. doi:10.1016/S1473-3099(08)70041-018291338
  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis. 2007;13:1840.18258033
  • Arumugam SN, Rudraradhya AC, Sadagopan S, Sukumaran S, Sambasivam G, Ramesh N. Analysis of susceptibility patterns of pseudomonas aeruginosa and isolation, characterization of lytic bacteriophages targeting multi drug resistant pseudomonas aeruginosa. Biomed Pharmacol J. 2018;11:1105–1117.
  • Rashel M, Uchiyama J, Ujihara T, et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage ϕMR11. J Infect Dis. 2007;196:1237–1247. doi:10.1086/52130517955443
  • Latz S, Kruttgen A, Häfner H, Buhl EM, Ritter K, Horz H-P. Differential effect of newly isolated phages belonging to PB1-like, phiKZ-like and LUZ24-like viruses against multi-drug resistant pseudomonas aeruginosa under varying growth conditions. Viruses. 2017;9:315. doi:10.3390/v9110315
  • Golkar Z, Bagasra O, Jamil N. Experimental phage therapy on multiple drug resistant Pseudomonas aeruginosa infection in mice. J Antivir Antiretrovir. 2013: S10–005. doi, 10.
  • Wang J, Hu B, Xu M, et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med. 2006;17:309–317.16391831
  • Jun JW, Shin TH, Kim JH, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic–resistant O3: K6 pandemic clinical strain. J Infect Dis. 2014;210:72–78. doi:10.1093/infdis/jiu05924558119
  • Pouillot F, Chomton M, Blois H, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–3575.22491690
  • Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 2005;49:1220–1221. doi:10.1128/AAC.49.3.1220-1221.200515728933
  • Kwiatek M, Mizak L, Parasion S, Gryko R, Olender A, Niemcewicz M. Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains. Folia Microbiol (Praha). 2015;60:7–14. doi:10.1007/s12223-014-0333-324993480
  • Peng F, Mi Z, Huang Y, et al. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol. 2014;14:181. doi:10.1186/1471-2180-14-18124996449
  • Larche J, Pouillot F, Essoh C, et al. Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother. 2012;56:6175–6180.22985882
  • Shokri D, Soleimani-Delfan A, Fatemi SM. Assessment of phage cocktails with extended host range activity against antibiotic resistant strains of Pseudomonas aeruginosa. Comp Clin Path. 2017;26:417–422. doi:10.1007/s00580-016-2394-y
  • Bai C, Liu Y, Mi Z, Tong Y. Potential of the phage depolymerase from a myoviridae bacteriophage vB_AbaM_IME200 against pandrug-resistant acinetobacter Baumannii. In: C60 Translational and Basic Investigations in Pulmonary Infection American Thoracic Society; 2018:A5488–A5488.
  • Comeau AM, Tetart F, Trojet SN, Prere M-F, Krisch H. Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2007;2:e799. doi:10.1371/journal.pone.000079917726529
  • Djurkovic S, Loeffler JM, Fischetti VA. Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob Agents Chemother. 2005;49:1225–1228. doi:10.1128/AAC.49.3.1225-1228.200515728935
  • Kelly D, Mcauliffe O, Ross R, Coffey A. Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol. 2012;54:286–291. doi:10.1111/lam.2012.54.issue-422251270
  • Khalifa L, Brosh Y, Gelman D, et al. Targeting Enterococcus faecalis biofilm using phage therapy. Appl Environ Microbiol. 2015;00096–15.
  • Kirby AE. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One. 2012;7:e51017. doi:10.1371/journal.pone.005101723226451
  • Loeffler J, Fischetti V. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and-resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother. 2003;47:375–377. doi:10.1128/AAC.47.1.375-377.200312499217
  • Oechslin F, Piccardi P, Mancini S, et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2016;215:703–712.
  • Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012;65:395–398. doi:10.1111/j.1574-695X.2012.00977.x22524448
  • Verma V, Harjai K, Chhibber S. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother. 2009;64:1212–1218. doi:10.1093/jac/dkp36019808232
  • Yele AB, Thawal ND, Sahu PK, Chopade BA. Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol. 2012;157:1441–1450. doi:10.1007/s00705-012-1320-022552486
  • Rohde C, Resch G, Pirnay J-P, et al. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses. 2018;10:178. doi:10.3390/v10040178
  • Susskind MM, Wright A, Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium: II. Genetic evidence for two exclusion systems. Virology. 1971;45:638–652. doi:10.1016/0042-6822(71)90178-44942206
  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre A-S, Lavigne R. Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci. 2012;13:699–722. doi:10.2174/13892031280487119323305359
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317. doi:10.1038/nrmicro231520348932
  • Sekulovic O, Ospina Bedoya M, Fivian‐Hughes AS, Fairweather NF, Fortier LC. The C lostridium difficile cell wall protein CwpV confers phase‐variable phage resistance. Mol Microbiol. 2015;98:329–342. doi:10.1111/mmi.1312126179020
  • Chapman-Mcquiston E, Wu X. Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part I: experiments. Biophys J. 2008;94:4525–4536. doi:10.1529/biophysj.107.12021218310238
  • Mahmud RS, Mindubaeva L, Ulyanova V, Khazieva L, Vargas H, Ilinskaya O. Antibacteriophage action of Bacillus altitudinis extracellular ribonuclease. FEBS J. 2016;283:58–123.
  • Chaudhary K. BacteRiophage EXclusion (BREX): a novel anti‐phage mechanism in the arsenal of bacterial defense system. J Cell Physiol. 2018;233:771–773. doi:10.1002/jcp.2597328444888
  • Hoque MM, Naser IB, Bari SN, Zhu J, Mekalanos JJ, Faruque SM. Quorum regulated resistance of Vibrio cholerae against environmental bacteriophages. Sci Rep. 2016;6:37956. doi:10.1038/srep3795627892495
  • Tan D, Svenningsen SL, Middelboe M. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. MBio. 2015;6:e00627–15. doi:10.1128/mBio.00627-1526081633
  • Ofir G, Melamed S, Sberro H, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol. 2018;3:90. doi:10.1038/s41564-017-0051-029085076
  • Chopin M-C, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol. 2005;8:473–479. doi:10.1016/j.mib.2005.06.00615979388
  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci. 2009;106:894–899. doi:10.1073/pnas.080883210619124776
  • Samson JE, Belanger M, Moineau S. Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol. 2013;00296–13.
  • Martínez-Rubio R, QUILES-PUCHALT N, MARTí M, et al. Phage-inducible islands in the Gram-positive cocci. ISME J. 2017;11:1029. doi:10.1038/ismej.2016.16327959343
  • Penades JR, Christie GE. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annl Rev Virol. 2015;2:181–201. doi:10.1146/annurev-virology-031413-08544626958912
  • Seed KD. Battling phages: how bacteria defend against viral attack. PLoS Pathog. 2015;11:e1004847. doi:10.1371/journal.ppat.100484726066799
  • Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR–cas inhibition by anti-CRISPR proteins. Nature. 2015;526:136. doi:10.1038/nature1525426416740
  • Obeng N, Pratama AA, Van Elsas JD. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 2016;24:440–449. doi:10.1016/j.tim.2015.12.00926826796
  • Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675. doi:10.1038/nrmicro309623979432
  • Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell. 2017;168:186–199. e12. doi:10.1016/j.cell.2016.12.00328041851
  • Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013;493:429. doi:10.1038/nature1172323242138
  • Hynes AP, Rousseau GM, Lemay M-L, et al. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol. 2017;2:1374. doi:10.1038/s41564-017-0004-728785032
  • Landsberger M, Gandon S, Meaden S, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–916. e12. doi:10.1016/j.cell.2018.05.05830033365
  • Seed KD, Lazinski DW, Calderwood SB, Camilli A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature. 2013;494:489. doi:10.1038/nature1192723446421
  • Örmälä A-M, Jalasvuori M. Phage therapy: should bacterial resistance to phages be a concern, even in the long run? Bacteriophage. 2013;3:e24219. doi:10.4161/bact.2421923819105
  • Pirnay J-P, Blasdel BG, Bretaudeau L, et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 2015;32:2173–2179. doi:10.1007/s11095-014-1617-725585954
  • Oliveira J, Castilho F, Cunha A, Pereira M. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult Int. 2012;20:879–910.
  • Weld RJ, Butts C, Heinemann JA. Models of phage growth and their applicability to phage therapy. J Theor Biol. 2004;227:1–11. doi:10.1016/S0022-5193(03)00262-514969703
  • Gorski A, Miedzybrodzki R, Borysowski J, et al. Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs. 2009;10:766–774.
  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, et al. Clinical aspects of phage therapy. Adv Virus Res. 2012 Elsevier.
  • Stafford N. Switzerland is to fund complementary therapies for six years while effectiveness is evaluated. BMJ. 2011;35:569–583.