136
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Altered Brain Function in Young HIV Patients with Syphilis Infection: A Voxel-Wise Degree Centrality Analysis

, , , , , & show all
Pages 823-833 | Published online: 11 Mar 2020

References

  • Hobbs E, Vera JH, Marks M, Barritt AW, Ridha BH, Lawrence D. Neurosyphilis in patients with HIV. Pract Neurol. 2018;18:211–218. doi:10.1136/practneurol-2017-00175429478035
  • Ho EL, Maxwell CL, Dunaway SB, et al. Neurosyphilis Increases Human Immunodeficiency Virus (HIV)-associated central nervous system inflammation but does not explain cognitive impairment in hiv-infected individuals with syphilis. Clin Infect Dis. 2017;65:943–948. doi:10.1093/cid/cix47328525592
  • Rolfs RT, Joesoef MR, Hendershot EF, et al. A randomized trial of enhanced therapy for early syphilis in patients with and without human immunodeficiency virus infection. The syphilis and HIV study group. N Engl J Med. 1997;337:307–314. doi:10.1056/NEJM1997073133705049235493
  • Lukehart SA, Hook EW 3rd, Baker-zander SA, Collier AC, Critchlow CW, Handsfield HH. Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann Intern Med. 1988;109:855–862. doi:10.7326/0003-4819-109-11-8553056164
  • Walter T, Lebouche B, Miailhes P, et al. Symptomatic relapse of neurologic syphilis after benzathine penicillin G therapy for primary or secondary syphilis in HIV-infected patients. Clin Infect Dis. 2006;43:787–790. doi:10.1086/50709916912958
  • Lynn WA, Lightman S. Syphilis and HIV: a dangerous combination. Lancet Infect Dis. 2004;4:456–466. doi:10.1016/S1473-3099(04)01061-815219556
  • Ellero J, Lubomski M, Brew B. Interventions for neurocognitive dysfunction. Curr HIV/AIDS Rep. 2017;14:8–16. doi:10.1007/s11904-017-0346-z28110422
  • Clifford DB. HIV-associated neurocognitive disorder. Curr Opin Infect Dis. 2017;30:117–122. doi:10.1097/QCO.000000000000032827798498
  • Ances BM, Hammoud DA. Neuroimaging of HIV-associated neurocognitive disorders (HAND). Curr Opin HIV AIDS. 2014;9:545–551. doi:10.1097/COH.000000000000011225250553
  • Hakkers CS, Arends JE, Barth RE, Du Plessis S, Hoepelman AI, Vink M. Review of functional MRI in HIV: effects of aging and medication. J Neurovirol. 2017;23:20–32. doi:10.1007/s13365-016-0483-y27718211
  • Cole JH, Caan MWA, Underwood J, et al. No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus: longitudinal neuroimaging results from the comorbidity in relation to AIDS (COBRA) project. Clin Infect Dis. 2018;66:1899–1909. doi:10.1093/cid/cix112429309532
  • Wang H, Li R, Zhou Y, et al. Altered cerebro-cerebellum resting-state functional connectivity in HIV-infected male patients. J Neurovirol. 2018;24:587–596. doi:10.1007/s13365-018-0649-x29785582
  • Wallace MR, Heaton RK, McCutchan JA, et al. Neurocognitive impairment in human immunodeficiency virus infection is correlated with sexually transmitted disease history. Sex Transm Dis. 1997;24:398–401. doi:10.1097/00007435-199708000-000039263360
  • Marra CM, Deutsch R, Collier AC, et al. Neurocognitive impairment in HIV-infected individuals with previous syphilis. Int J STD AIDS. 2013;24:351–355. doi:10.1177/095646241247282723970701
  • Thomas JB, Brier MR, Ortega M, Benzinger TL, Ances BM. Weighted brain networks in disease: centrality and entropy in human immunodeficiency virus and aging. Neurobiol Aging. 2015;36:401–412. doi:10.1016/j.neurobiolaging25034343
  • Abidin AZ, DSouza AM, Nagarajan MB, et al. Alteration of brain network topology in HIV-associated neurocognitive disorder: a novel functional connectivity perspective. Neuroimage Clin. 2017;17:768–777. doi:10.1016/j.nicl.2017.11.02529527484
  • Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8:33–44. doi:10.1038/nrn204017180161
  • Buckner RL, Sepulcre J, Talukdar T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to alzheimer’s disease. J Neurosci. 2009;29:1860–1873. doi:10.1523/JNEUROSCI.5062-08.200919211893
  • Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–1799. doi:10.1212/01.WNL.0000287431.88658.8b17914061
  • Gandhi NS, Skolasky RL, Peters KB, et al. A comparison of performance-based measures of function in HIV-associated neurocognitive disorders. J Neurovirol. 2011;17:159–165. doi:10.1007/s13365-011-0023-821437751
  • Cox RW, Chen G, Glen DR, Reynolds RC, Taylor PA. FMRI clustering in AFNI: false-positive rates redux. Brain Connect. 2017;7:152–171. doi:10.1089/brain.2016.047528398812
  • Moulton CD, Koychev I. The effect of penicillin therapy on cognitive outcomes in neurosyphilis: a systematic review of the literature. Gen Hosp Psychiatry. 2015;37:49–52. doi:10.1016/j.genhosppsych.2014.10.00825468254
  • Beauchemin P, Laforce R Jr. Neurocognitive changes in tertiary neurosyphilis: a retrospective chart review. Can J Neurol Sci. 2014;41:452–458. doi:10.1017/s031716710001848524878469
  • Cohen RA, Siegel S, Gullett JM, et al. Neural response to working memory demand predicts neurocognitive deficits in HIV. J Neurovirol. 2018; 24:291–304. doi:10.1007/s13365-017-0607-z29280107
  • Corgiolu S, Barberini L, Suri JS, et al. Resting-state functional connectivity MRI analysis in Human Immunodeficiency virus and hepatitis C virus co-infected subjects. A pilot study. Eur J Radiol. 2018;102:220–227. doi:10.1016/j.ejrad.2018.03.02229685540
  • Bharti AR, McCutchan A, Deutsch R, et al. Latent toxoplasma infection and higher toxoplasma gondii immunoglobulin G levels are associated with worse neurocognitive functioning in HIV-infected adults. Clin Infect Dis. 2016;63:1655–1660. doi:10.1093/cid/ciw65527794019
  • Wang Y, Jiang L, Wang XY, et al. Evidence of altered brain network centrality in patients with diabetic nephropathy and retinopathy: an fMRI study using a voxel-wise degree centrality approach. Ther Adv Endocrinol Metab. 2019;10:2042018819865723. doi:10.1177/204201881986572331384421
  • Weng Y, Qi R, Liu C, et al. Disrupted functional connectivity density in irritable bowel syndrome patients. Brain Imaging Behav. 2017;1:1812–1822. doi:10.1007/s11682-016-9653-z
  • Qi R, Zhang LJ, Chen HJ, et al. Role of local and distant functional connectivity density in the development of minimal hepatic encephalopathy. Sci Rep. 2015;5:13720. doi:10.1038/srep1372026329994
  • Abidin AZ, D’souza AM, Nagarajan MB, Wismüller A. Investigating changes in brain network properties in HIV-associated neurocognitive disease (HAND) using Mutual Connectivity Analysis (MCA). Proc SPIE Int Soc Opt Eng. 2016;9788:97881W. doi:10.1117/12.2217317
  • Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702. doi:10.1038/nrn174716136173
  • Ketzler S, Weis S, Haug H, Budka H. Loss of neurons in the frontal cortex in AIDS brains. Acta Neuropathol. 1990;80:92–94. doi:10.1007/bf02942282360420
  • Thompson PM, Dutton RA, Hayashi KM, et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A. 2005;102:15647–15652. doi:10.1073/pnas.050254810216227428
  • Ernst T, Chang L, Arnold S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage. 2003;19:1686–1693. doi:10.1016/s1053-8119(03)00232-512948723
  • Sailasuta N, Shriner K, Ross B. Evidence of reduced glutamate in the frontal lobe of HIV-seropositive patients. NMR Biomed. 2009;22:326–331. doi:10.1002/nbm.132918988228
  • Ann HW, Jun S, Shin NY, et al. Characteristics of resting-state functional connectivity in HIV-associated neurocognitive disorder. PLoS One. 2016;11:e0153493. doi:10.1371/journal.pone.015349327104345
  • Grauer OM, Reichelt D, Grüneberg U, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid. Ann Clin Transl Neurol. 2015;2:906–919. doi:10.1002/acn3.22726401512
  • Igelström KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83. doi:10.1016/j.neuropsychologia.2017.01.00128057458
  • Shin NY, Hong J, Choi JY, Lee SK, Lim SM, Yoon U. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients. Eur Radiol. 2017;27:4721–4729. doi:10.1007/s00330-017-4836-628409354
  • Li J, Gao L, Wen Z, et al. Structural covariance of gray matter volume in HIV vertically infected adolescents. Sci Rep. 2018;8:1182. doi:10.1038/s41598-018-19290-529352127
  • Wang X, Foryt P, Ochs R, et al. Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connect. 2011;1:207–217. doi:10.1089/brain.2011.001622433049
  • Wang B, Liu Z, Liu J, Tang Z, Li H, Tian J. Gray and white matter alterations in early HIV-infected patients: combined voxel-based morphometry and tract-based spatial statistics. J Magn Reson Imaging. 2016;43:1474–1483. doi:10.1002/jmri.2510026714822
  • Plessis SD, Vink M, Joska JA, Koutsilieri E, Stein DJ, Emsley R. HIV infection and the fronto-striatal system: a systematic review and meta-analysis of fMRI studies. AIDS. 2014;28(6):803–811. doi:10.1097/QAD.000000000000015124300546
  • Ortega M, Brier MR, Ances BM. Effects of HIV and combination antiretroviral therapy on cortico-striatal functional connectivity. AIDS. 2015;29:703–712. doi:10.1097/QAD.000000000000061125849834
  • Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology. 2013;80:1186–1193. doi:10.1212/WNL.0b013e318288792b23446675
  • Zhuang Y, Qiu X, Wang L, et al. Combination antiretroviral therapy improves cognitive performance and functional connectivity in treatment-naïve HIV-infected individuals. J Neurovirol. 2017;23:704–712. doi:10.1007/s13365-017-0553-928791662
  • Küper M, Rabe K, Esser S, et al. Structural gray and white matter changes in patients with HIV. J Neurol. 2011;258:1066–1075. doi:10.1007/s00415-010-5883-y21207051
  • Egbert AR, Biswal B, Karunakaran K, et al. Age and HIV effects on resting state of the brain in relationship to neurocognitive functioning. Behav Brain Res. 2018;344:20–27. doi:10.1016/j.bbr.2018.02.00729425918
  • Ances BM, Sisti D, Vaida F, et al. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology. 2009;73:702–708. doi:10.1212/WNL.0b013e3181b59a9719720977