127
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Whole-Genome Analysis of Two Copies of blaNDM-1 Gene Carrying Acinetobacter johnsonii Strain Acsw19 Isolated from Sichuan, China

, , , , , , , , ORCID Icon, ORCID Icon & show all
Pages 855-865 | Published online: 23 Mar 2020

References

  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–58, table of contents. doi:10.1128/CMR.00001-0717630334
  • Fu L, Huang M, Zhang X, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168–172. doi:10.1016/j.micpath.2018.01.03029360567
  • Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006.
  • Liu Y, Zhang H, Zhang X, et al. Characterization of an NDM-19-producing Klebsiella pneumoniae strain harboring 2 resistance plasmids from China. Diagn Microbiol Infect Dis. 2019;93(4):355–361. doi:10.1016/j.diagmicrobio.2018.11.00730552032
  • Fu L, Ang GY, Yu CY, et al. Co-carrying of KPC-2, NDM-5, CTX-M-3 and CTX-M-65 in three plasmids with serotype O89: H10 Escherichia coli strain belonging to the ST2 clone in China. Microb Pathog. 2019;128:1–6. doi:10.1016/j.micpath.2018.12.03330576714
  • Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist. 2015;8:297–309. doi:10.2147/IDR.S3918626345624
  • Liu X, Zhang J, Li Y, et al. Diversity and frequency of resistance and virulence genes in blaKPC and blaNDM co-producing Klebsiella pneumoniae strains from China. Infect Drug Resist. 2019;12:2819–2826. doi:10.2147/IDR31571938
  • Kiaei S, Moradi M, Hosseini-nave H, et al. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist. 2019;12:45–54. doi:10.2147/IDR30613156
  • Papagiannitsis CC, Bitar I, Malli E, et al. IncC blaKPC-2-positive plasmid characterised from ST648 Escherichia coli. J Glob Antimicrob Resist. 2019;19:73–77. doi:10.1016/j.jgar.2019.05.00131077860
  • Hu Y, Feng Y, Qin J, Zhang X, Zong Z. Acinetobacter chinensis, a novel Acinetobacter species, carrying blaNDM-1, recovered from hospital sewage. J Microbiol. 2019;57(5):350–355. doi:10.1007/s12275-019-8485-030806982
  • Feng Y, Yang P, Wang X, et al. Characterization of Acinetobacter johnsonii isolate XBB1 carrying nine plasmids and encoding NDM-1, OXA-58 and PER-1 by genome sequencing. J Antimicrobial Chemother. 2015;71(1):71. doi:10.1093/jac/dkv324
  • Liu WJ, et al. Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol. 2017;66(1).
  • Waltherrasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrobial Chemother. 2006;57(3):373. doi:10.1093/jac/dki482
  • Hammoudi D, Moubareck CA, Hakime N, et al. Spread of imipenem-resistant Acinetobacter baumannii co-expressing OXA-23 and GES-11 carbapenemases in Lebanon. Int J Infect Dis Ijid off Publ Int Soc Infect Dis. 2015;36(C):56–61. doi:10.1016/j.ijid.2015.05.015
  • Higgins PG, Poirel L, Lehmann M, et al. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(12):5035–5038. doi:10.1128/AAC.00856-0919770279
  • Nuno T,A, Lamoureaux TL, Toth M, et al. Class D β-lactamases: are they all carbapenemases? Antimicrob Agents Chemother. 2014;58(4):2119–2125. doi:10.1128/AAC.02522-1324468778
  • Yang Q, Rui Y. Two multiplex real-time PCR assays to detect and differentiate acinetobacter baumannii and non- baumannii acinetobacter spp. carrying blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like genes. PLoS One. 2016;11(7):e0158958. doi:10.1371/journal.pone.015895827391234
  • Khorsi K, et al. ISAba36 inserted into the outer membrane protein gene carO and associated with the carbapenemase gene blaOXA-24-like in Acinetobacter baumannii. J Glob Antimicrob Resist. 2018;15:107–108. doi:10.1016/j.jgar.2018.08.02030172044
  • Nishida S, Ono Y. Comparative analysis of the pathogenicity between multidrug-resistant Acinetobacter baumannii clinical isolates: isolation of highly pathogenic multidrug-resistant A. baumannii and experimental therapeutics with fourth-generation cephalosporin cefozopran. Infect Drug Resist. 2018;11:1715–1722. doi:10.2147/IDR.S16615430349328
  • Zenati K, Touati A, Bakour S, et al. Characterization of NDM-1- and OXA-23-producing Acinetobacter baumannii isolates from inanimate surfaces in a hospital environment in Algeria. J Hosp Infect. 2016;92(1):19–26. doi:10.1016/j.jhin.2015.09.02026615460
  • Guerra B, Fischer J, Helmuth R. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol. 2014;171(3–4):290–297. doi:10.1016/j.vetmic.2014.02.00124629777
  • Sørensen SJ, Bailey M, Hansen LH, et al. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol. 2005;3(9):700–710. doi:10.1038/nrmicro123216138098
  • Peter JG, Townsend, JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3(9):679–687. doi:10.1038/nrmicro1204
  • Brown-jaque M, Calero-cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid. 2015;79(3):1–7. doi:10.1016/j.plasmid.2015.01.00125597519
  • Zhou S, Chen X, Meng X, et al. “Roar” of blaNDM-1 and “silence” of blaOXA-58 co-exist in Acinetobacter pittii. Sci Rep. 2015;5(1):8976. doi:10.1038/srep0897625755005
  • Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–679. doi:10.1093/bioinformatics/btm00917237039
  • Goris J, Goris J, Vandamme P, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(Pt 1):81–91. doi:10.1099/ijs.0.64483-017220447
  • Ea Z, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrobial Chemother. 2012;67(11):2640–2644. doi:10.1093/jac/dks261
  • Bertelli C, Brinkman F. Improved genomic island predictions with IslandPath-DIMOB. Bioinformatics. 2018;34(13):2161–2167. doi:10.1093/bioinformatics/bty09529905770
  • Langille MG, Hsiao WW, Brinkman FS. Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics. 2008;9(1):329. doi:10.1186/1471-2105-9-32918680607
  • Waack S, Keller O, Asper R, et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics. 2006;7(1):1–12. doi:10.1186/1471-2105-7-14216393334
  • Langille MGI, Brinkman FSL. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 2009;25(5):664–665. doi:10.1093/bioinformatics/btp03019151094
  • Zhao F, Feng Y, Lü X, et al. Remarkable diversity of Escherichia coli Carrying mcr-1 from hospital sewage with the identification of two new mcr-1 variants. Front Microbiol. 2017;8:2094. doi:10.3389/fmicb.2017.0209429118748
  • Hu Y, Feng Y, Zhang X, et al. Acinetobacter defluvii sp. nov., recovered from hospital sewage. Int J Syst Evol Microbiol. 2017;67(6):1709–1713. doi:10.1099/ijsem.0.00184728211316
  • Paiva MC, Reis MP, Costa PS, et al. Identification of new bacteria harboring qnrS and aac(6ʹ)-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. Water Res. 2017;110:27–37. doi:10.1016/j.watres.2016.11.05627984803
  • Uyaguari MI, Fichot EB, Scott GI, et al. Characterization and quantitation of a novel beta-lactamase gene found in a wastewater treatment facility and the surrounding coastal ecosystem. Appl Environ Microbiol. 2011;77(23):8226–8233. doi:10.1128/AEM.02732-1021965412
  • Zhang XZ, Lei CW, Zeng JX, et al. An IncX1 plasmid isolated from Salmonella enterica subsp. enterica serovar Pullorum carrying blaTEM-1B, sul2, arsenic resistant operons. Plasmid. 2018.
  • Klotz P, Jacobmeyer L, Leidner U, et al. Acinetobacter pittii from companion animals coharboring blaOXA-58, the tet(39) region, and other resistance genes on a single plasmid. Antimicrob Agents Chemother. 2017;62(1):AAC.01993–17. doi:10.1128/AAC.01993-17
  • Ang GY, Yu CY, Cheong YM, et al. Emergence of ST119 Acinetobacter pittii co-harbouring NDM-1 and OXA-58 in Malaysia. Int J Antimicrob Agents. 2015;47(2):168–169. doi:10.1016/j.ijantimicag.2015.11.00826742728
  • Cayô R, Rodrigues-costa F, Pereira Matos A, et al. Old clinical isolates of Acinetobacter seifertii in Brazil producing OXA-58. Antimicrob Agents Chemother. 2016;60(4):AAC.01957–15. doi:10.1128/AAC.01957-15
  • Yaligara V, Husain F, Boente R, et al. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis. J Antimicrobial Chemother. 2014;69(10):2634–2643. doi:10.1093/jac/dku219
  • Zou D, Huang Y, Liu W, et al. Complete sequences of two novel blaNDM-1-harbouring plasmids from two Acinetobacter towneri isolates in China associated with the acquisition of Tn125. Sci Rep. 2017;7(1):9405. doi:10.1038/s41598-017-09624-028839253
  • Paula E, Mosqueda N, Telli M, et al. Identification of NDM-1 in a putatively novel acinetobacter species (“NB14”) closely related to Acinetobacter pittii. Antimicrob Agents Chemother. 2015;59(10):6657–6660. doi:10.1128/AAC.01455-1526259796
  • Frost L, Leplae R, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3(9):722–732.16138100
  • Nicolas C, Matteau D, Luo P, et al. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet. 2014;10(10):e1004714. doi:10.1371/journal.pgen.100471425340549
  • Carraro N, Rivard N, Burrus V, et al. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elements. 2017;7(2):1–6. doi:10.1080/2159256X.2017.1304193
  • Partridge SR, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4).