205
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Co-Incidence of Type II Topoisomerase Mutations and Efflux Expression in High Fluoroquinolone Resistant Enterococcus faecalis Isolated from Urinary Tract Infections

, , ORCID Icon &
Pages 553-559 | Published online: 18 Feb 2020

References

  • Adam HJ, Hoban DJ, Gin AS, Zhanel GG. Association between fluoroquinolone usage and a dramatic rise in ciprofloxacin-resistant Streptococcus pneumoniae in Canada, 1997–2006. Int J Antimicrob Agents. 2009;34(1):82–85. doi:10.1016/j.ijantimicag.2009.02.00219342204
  • Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006_2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011. doi:10.1086/59186118947320
  • Jonas BM, Murray BE, Weinstock GM. Characterization of emeA, anorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother. 2001;45(12):3574–3579. doi:10.1128/AAC.45.12.3574-3579.200111709342
  • Shiadeh SMJ, Hashemi A, Fallah F, Lak P, Azimi L, Rashidan M. First detection of efrAB, an ABC multidrug efflux pump in Enterococcus faecalis in Tehran, Iran. Acta Microbiol Immunol Hun. 2018;66(1):57–68. doi:10.1556/030.65.2018.016
  • Urushibara N, Suzaki K, Kawaguchiya M, et al. Contribution of type II topoisomerase mutations to fluoroquinolone resistance in Enterococcus faecium from Japanese clinical setting. Microb Drug Resist. 2018;24(1):1–7. doi:10.1089/mdr.2016.032828504916
  • Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines—mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev. 2018;10(2):347–362. doi:10.1007/s12551-018-0404-929525835
  • Facklam RR, Collins MD. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol. 1989;27:731–734. doi:10.1128/JCM.27.4.731-734.19892656745
  • Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995;33:24–27. doi:10.1128/JCM.33.1.24-27.19957699051
  • Performance CLSI. Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
  • Oyamada Y, Ito H, Inoue M, Yamagishi JI. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis. J Med Microbiol. 2006;55(10):1395–1401. doi:10.1099/jmm.0.46636-017005789
  • Lerma LL, Benomar N, Valenzuela AS, Muñoz M, Gálvez A, Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014;44:249–257. doi:10.1016/j.fm.2014.06.00925084670
  • Jia W, Li G, Wang W. Prevalence and antimicrobial resistance of Enterococcus species: a hospital-based study in China. Int J Environ Res Public Health. 2014;11(3):3424–3442. doi:10.3390/ijerph11030342424662964
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45. doi:10.1093/nar/29.9.e4511328886
  • Leavis HL, Willems RJ, Top J, Bonten MJ. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol. 2006;44(3):1059–1064. doi:10.1128/JCM.44.3.1059-1064.200616517894
  • Lopez M, Tenorio C, Del Campo R, Zarazaga M, Torres C. Characterization of the mechanisms of fluoroquinolone resistance in vancomycin-resistant enterococci of different origins. J Chemother. 2011;23(2):87–91. doi:10.1179/joc.2011.23.2.8721571624
  • Yasufuku T, Shigemura K, Shirakawa T, et al. Mechanisms of and risk factors for fluoroquinolone resistance in clinical Enterococcus faecalis isolates from patients with urinary tract infections. J Clin Microbiol. 2011;49(11):3912–3916. doi:10.1128/JCM.05549-1121918020
  • Jafari-Sales A, Sayyahi J, Akbari-Layeg F, Mizabi-Asl M, Rasi-Bonab F. Identification of gyrA gene in ciprofloxacin-resistant enterococcus faecalis in strains isolated from clinical specimens in hospitals and clinics of Tabriz and Marand cities. Arch Clin Microbiol. 2017;8(5):63.
  • Piekarska K, Gierczynski R, Lawrynowicz-Paciorek M, Kochman M, Jagielski M. Novel gyrase mutations and characterization of ciprofloxacin-resistant clinical strains of Enterococcus faecalis isolated in Poland. Pol J Microbiol. 2008;57(2):121–124.18646399
  • Kanematsu E, Deguchi T, Yasuda M, Kawamura T, Nishino Y, Kawada Y. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 1998;42(2):433–435.9527801
  • Kim MC, Woo GJ. Characterization of antimicrobial resistance and quinolone resistance factors in high‐level ciprofloxacin‐resistant Enterococcus faecalis and Enterococcus faecium isolates obtained from fresh produce and fecal samples of patients. J Sci Food Agric. 2017;97(9):2858–2864. doi:10.1002/jsfa.811527790716
  • Aldred KJ, McPherson SA, Turnbough CL Jr, Kerns RJ, Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res. 2013;41(8):4628–4639. doi:10.1093/nar/gkt12423460203
  • Sanchez Valenzuela A, Lavilla Lerma L, Benomar N, Gálvez A, Perez Pulido R, Abriouel H. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods. Foodborne Pathog Dis. 2013;10(2):143–149. doi:10.1089/fpd.2012.127923259502
  • Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev. 2007;71(3):463–476. doi:10.1128/MMBR.00001-0717804667
  • Pazoles J, Talbot MK, Alder EA, et al. Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol. 2001;3(2):179–184.11321571
  • Oyamada Y, Ito H, Fujimoto K, et al. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. J Med Microbiol. 2007;55(6):729–736. doi:10.1099/jmm.0.46303-0