298
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Distribution of Pathogenic Yeasts in Different Clinical Samples: Their Identification, Antifungal Susceptibility Pattern, and Cell Invasion Assays

, , ORCID Icon, , , , & show all
Pages 1133-1145 | Published online: 20 Apr 2020

References

  • Pappas PG, Lionakis MS, Arendrup MC, et al. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026. doi:10.1038/nrdp.2018.2629749387
  • Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp. among Candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14:e954–e966. doi:10.1016/j.ijid.2010.04.00620797887
  • Schwartz IS, Patterson TF. The emerging threat of antifungal resistance in transplant infectious diseases. Curr Infect Dis Rep. 2018;20(3):2. doi:10.1007/s11908-018-0608-y29404711
  • Paolucci M, Landini MP, Sambri V. How can the microbiologist help in diagnosing neonatal sepsis? Int J Pediatr. 2012;120139.
  • He S, Hang JP, Zhang L, et al. A systematic review and meta-analysis of diagnostic accuracy of serum 1, 3-β-D-glucan for invasive fungal infection: focus on cut off levels. J Microbiol Immunol Infect. 2015;48:351–361. doi:10.1016/j.jmii.2014.06.00925081986
  • Williams DW, Lewis MAO. Isolation and identification of Candida from the oral cavity. ISRN Dent. 2000;3–11.
  • Zhang J, Hung GC, Nagamine K, et al. Development of Candida-specific real-time PCR assays for the detection and identification of eight medically important Candida species. Microbiol Insights. 2016;9:21–28. doi:10.4137/MBI.S3851727103821
  • Avni T, Leibovici L, Paul M. PCR diagnosis of invasive Candidiasis: systematic review and meta-analysis. J Clin Microbiol. 2011;49:665–670. doi:10.1128/JCM.01602-1021106797
  • Brinkman NE, Haugland RA, Wymer LJ, et al. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water. Appl Environ Microbiol. 2003;69:1775–1782. doi:10.1128/AEM.69.3.1775-1782.200312620869
  • Mirhendi H, Makimura K, Khoramizadeh M, et al. A one-enzyme PCR-RFLP assay for identification of six medically important Candida species. Nihon Ishinkin Gakkai Zasshi. 2006;47:225–229. doi:10.3314/jjmm.47.22516940958
  • Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80:756–770. doi:10.1021/acs.jnatprod.6b0108528199101
  • Lacroix C, Gicquel A, Sendid B, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20:153–158. doi:10.1111/1469-0691.1221023594150
  • Qian J, Cutler JE, Cole RB, et al. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem. 2008;392:439–449. doi:10.1007/s00216-008-2288-118690424
  • Pfaller MA, Houston A, Coffmann S. Application of CHROM agar candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata. J Clin Microbiol. 1996;34:58–61. doi:10.1128/JCM.34.1.58-61.19968748273
  • Basu S, Gugnani HC, Joshi S, et al. Distribution of Candida species in different clinical sources in Delhi, India, and proteinase and phospholipase activity of Candida albicansisolates. Rev Iberoam Micol. 2003;20:137–140.15456350
  • Mohandas V, Ballal M. Distribution of Candida species in different clinical samples and their virulence: biofilm formation, proteinase and phospholipase production: a study on hospitalized patients in Southern India. J Glob Infect Dis. 2011;3:4. doi:10.4103/0974-777X.7728821572601
  • Kaur R, Dhakad MS, Goyal R, et al. Emergence of non-albicans Candida species and antifungal resistance in intensive care unit patients. Asian Pac J Trop Biomed. 2016;6:455–460. doi:10.1016/j.apjtb.2015.12.019
  • Bhattacharjee P. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India. Curr. Med. Mycol. 2016;2. doi:10.18869/acadpub.cmm.2.2.5
  • Boratyn GM, Camacho C, Cooper PS, et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 2013;41:W29–33. doi:10.1093/nar/gkt28223609542
  • Larone DH. Medically Important Fungi: A Guide to Identification. 4th ed. Washington D.C: American Society for Microbiology Press; 2002:409.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi:10.1093/molbev/msw05427004904
  • Chao QT, Lee TF, Teng SH, et al. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PLoS One. 2014;9:e109376. doi:10.1371/journal.pone.010937625330370
  • Stevenson LG, Drake SK, Shea YR, et al. Evaluation of matrix-assisted laser desorption ionization - Time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48:3482–3486. doi:10.1128/JCM.00687-0920668126
  • Mancini N, De Carolis E, Infurnari L, et al. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass Spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol. 2013;51:2453–2457. doi:10.1128/JCM.00841-1323678071
  • Sendid B, Ducoroy P, François N, et al. Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Med Mycol. 2013;51:25–32. doi:10.3109/13693786.2012.69363122703164
  • Westblade LF, Jennemann R, Branda JA, et al. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol. 2013;51:2267–2272. doi:10.1128/JCM.00680-1323658267
  • Hamprecht A, Christ S, Oestreicher T, et al. Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol. 2014;203:93–99. doi:10.1007/s00430-013-0319-924310420
  • Li MC, Chang TC, Chen HM, et al. Oligonucleotide array and VITEK matrix-assisted laser desorption ionization-time of flight mass spectrometry in species identification of blood yeast isolates. Front Microbiol. 2018;9:1–7. doi:10.3389/fmicb.2018.0000129403456
  • Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol. 2016;7:1359. doi:10.3389/fmicb.2016.0135927625644
  • Liu H, Du Z, Wang J, Yang R. Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2007;73:1899–1907. doi:10.1128/AEM.02391-0617277202
  • Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4(5):732–742. doi:10.1038/nprot.2009.3719390529
  • Faria-Ramos I, Neves-Maia J, Ricardo E, et al. Species distribution and in vitro antifungal susceptibility profiles of yeast isolates from invasive infections during a Portuguese multicenter survey. Eur J Clin Microbiol Infect Dis. 2014;33(12):2241–2247. doi:10.1007/s10096-014-2194-825012821
  • Guinea J, Zaragoza Ó, Escribano P, et al. Molecular identification and antifungal susceptibility of yeast isolates causing fungemia collected in a population-based study in Spain in 2010 and 2011. Antimicrob Agents Chemother. 2014;58(3):1529–1537. doi:10.1128/AAC.02155-1324366741
  • Minea B, Nastasa V, Moraru RF, et al. Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study. Eur J Clin Microbiol Infect Dis. 2014;34:367–383. doi:10.1007/s10096-014-2240-625224578
  • Orasch C, Marchetti O, Garbino J, et al. Candida species distribution and antifungal susceptibility testing according to European committee on antimicrobial susceptibility Testing and new vs. old clinical and laboratory standards institute clinical breakpoints: a 6-year prospective candidaemia’s. Clin Microbiol Infect. 2014;20:698–705. doi:10.1111/1469-0691.1244024188136
  • Meletiadis J, Curfs-Breuker I, Meis JF, et al. In vitro antifungal susceptibility testing of Candida isolates with the EUCAST methodology, a new method for ECOFF determination. Antimicrob Agents Chemother. 2017;61:1–6. doi:10.1128/AAC.02372-16
  • Bernhardt J, Bernhardt H, Knoke M, et al. Influence of voriconazole and fluconazole on reconstituted multilayered oesophageal epithelium infected by Candida albicans. Mycoses. 2004;47:330–337. doi:10.1111/j.1439-0507.2004.01004.x15310340
  • Wächtler B, Wilson D, Hube B. Candida albicans adhesion, invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother. 2011;55(9):4436–4439. doi:10.1128/AAC.00144-1121746947
  • Martins HP, Da Silva MC, Paiva LC, et al. Efficacy of fluconazole and nystatin in the treatment of vaginal Candida species. Acta Derm Venereol. 2012;92:78–82.21918792
  • Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida Species. Front Microbiol. 2017;7:2173. doi:10.3389/fmicb.2016.0217328127295
  • Castanheira M, Messer SA, Jones RN, Farrell DJ, Pfaller MA. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds collected from invasive infections. Int J Antimicrob Agents. 2014;44:320–326. doi:10.1016/j.ijantimicag.2014.06.00725129315
  • Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50:1199–1203. doi:10.1128/JCM.06112-1122278842
  • Cho EJ, Shin JH, Kim SH, et al. Emergence of multiple resistance profiles involving azoles, echinocandins and amphotericin B in Candida glabrata isolates from a neutropenia patient with prolonged fungaemia. J Antimicrob Chemother. 2015;70:1268–1270. doi:10.1093/jac/dku51825550394
  • Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6(11):e1001181. doi:10.1371/journal.ppat.100118121085601
  • Villar CC, Kashleva H, Mitchell AP, et al. Invasive phenotype of Candida albicans affects the host pro-inflammatory response to infection. Infect Immun. 2005;73(8):4588–4595. doi:10.1128/IAI.73.8.4588-4595.200516040970
  • Kullberg BJ, Arendrup MC. Invasive Candidiasis. N Engl J Med. 2016;374:794–795. doi:10.1056/NEJMc1514201
  • Romeo O, Tietz HJ, Criseo G. Candida africana: is it a fungal pathogen? Curr Fungal Infect Rep. 2013;7:192–197. doi:10.1007/s12281-013-0142-1
  • Borman AM, Szekely A, Linton CJ, et al. Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom. J Clin Microbiol. 2013;51:967–972. doi:10.1128/JCM.02816-1223303503
  • Yokoyama K, Biswas SK, Miyaji M, Nishimura K. Identification and phylogenetic relationship of the most common pathogenic Candida species inferred from mitochondrial cytochrome b gene sequences. J Clin Microbiol. 2000;38:4503–4510. doi:10.1128/JCM.38.12.4503-4510.200011101587
  • Aubertine CL, Rivera M, Rohan SM, et al. Comparative study of the new colorimetric VITEK 2 yeast identification card versus the older fluorometric card and of CHROM agar Candida as a source medium with the new card. J Clin Microbiol. 2006;44:227–228. doi:10.1128/JCM.44.1.227-228.200616390976
  • Wang H, Fan YY, Kudinha T, et al. A comprehensive evaluation of the Bruker Biotyper MS and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass spectrometry systems for identification of yeasts, part of the national China hospital invasive fungal surveillance net (CHIF-NET). J Clin Microbiol. 2016;54:1376–1380. doi:10.1128/JCM.00162-1626912761
  • Clancy CJ, Nguyen MH. Diagnosing invasive candidiasis. J Clin Microbiol. 2018;56:e01909–17. doi:10.1128/JCM.01909-1729444828
  • Chowdhary A, Sharma C, Meis JF. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017;13(5):e1006290. doi:10.1371/journal.ppat.100629028542486
  • Eddouzi J, Hofstetter V, Groenewald M. Characterization of a new clinical yeast species, Candida tunisiensis sp. nov., isolated from a strain collection of Tunisian hospitals. J Clin Microbiol. 2012;17:JCM–01627.
  • Pote ST, Chakraborty A, Lahiri KK, et al. Keratitis by a rare pathogen Colletotrichum gloeosporioides: a case report. J. Mycol Med. 2017;27:407–411. doi:10.1016/j.mycmed.2017.04.00928501467
  • Pote ST, Khan U, Lahiri KK, et al. Onychomycosis due to Achaetomium strumarium. J. Mycol Med. 2018;28:510–513. doi:10.1016/j.mycmed.2018.07.00230104134
  • Brandt ME, Lockhart SR. Recent taxonomic developments with Candida and other opportunistic yeasts. Curr Fungal Infect Rep. 2012;6(3):170–177. doi:10.1007/s12281-012-0094-x26526658
  • Sharma R, Shouche Y. Nannizzia graeserae sp. nov., a new dermatophyte of geophilic clade isolated from vicinity of a barbershop in India. Kavaka. 2018;50:14–20.