388
Views
14
CrossRef citations to date
0
Altmetric
Review

Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies

, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1785-1806 | Published online: 16 Jun 2020

References

  • Branden CI, Tooze J. Introduction to Protein Structure. Garland Science; 2012.
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347. doi:10.1038/nature1994927629641
  • Jung RH, Kim M, Bhatt B, Choi JM, Roh JH. Identification of pathogenic bacteria from public libraries via proteomics analysis. Int J Environ Res Public Health. 2019;16(6):912. doi:10.3390/ijerph16060912
  • Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics. 2011;11(4):721–743. doi:10.1002/pmic.20100041121229587
  • He F, Wu F, Zhong F, He F. Microbial proteomics: approaches, advances, and applications. J Bioinfo Proteom Imag Anal. 2016;2(1).
  • Lum KK, Cristea IM. Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection. Expert Rev Proteomics. 2016;13(3):325–340. doi:10.1586/14789450.2016.114735326817613
  • Lee C-R, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol. 2015;6:828. doi:10.3389/fmicb.2015.0082826322035
  • Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteomics. 2014;99:123–137. doi:10.1016/j.jprot.2014.01.01524486812
  • Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467. doi:10.1371/journal.ppat.100346723853589
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230.23554414
  • Yang Y, Hu M, Yu K, Zeng X, Liu X. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell. 2015;6(4):265–274. doi:10.1007/s13238-015-0136-625722051
  • Sampson SL. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol. 2011;2011:1–11. doi:10.1155/2011/497203
  • Senthilkumar B, Senbagam D, Prahalathan C, Anbarasu K. Gateways of pathogenic bacterial entry into host cells—salmonella In: Garrigues P, editor. Pocket Guide to Bacterial Infections. CRC Press; 2019:59–78.
  • Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–250. doi:10.1002/path.480927659608
  • Hartlova A, Krocova Z, Cerveny L, Stulik J. A proteomic view of the host–pathogen interaction: the host perspective. Proteomics. 2011;11(15):3212–3220. doi:10.1002/pmic.20100076721726044
  • Nicod C, Banaei-Esfahani A, Collins BC. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol. 2017;39:7–15. doi:10.1016/j.mib.2017.07.00528806587
  • Ravinder K. Gill RK, Hecht GA. Host-Pathogen Interactions in Pathophysiology of Diarrheal DisordersIn: Said HM, editor. Physiology of the Gastrointestinal Tract (Sixth Edition). Academic Press; 2018:1547–1577.
  • Inal JM, Ansa-Addo EA, Lange S. Interplay of Host–Pathogen Microvesicles and Their Role in Infectious Disease. Portland Press Limited; 2013.
  • Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol. 2018;112:54–64. doi:10.1016/j.ijbiomac.2018.01.15129414732
  • Beltran PMJ, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host–pathogen interactions and infectious diseases. Mol Syst Biol. 2017;13(3).
  • Cook HV, Jensen LJ. An integrative approach to virus–host protein–protein interactions Methods Mol Biol. 2018;1819:175–196.30421404
  • Van Els CA, Corbière V, Smits K, et al. Toward understanding the essence of post-translational modifications for the mycobacterium tuberculosis immunoproteome. Front Immunol. 2014;5:361. doi:10.3389/fimmu.2014.0036125157249
  • Du C, van Wezel GP. Mining for microbial gems: integrating proteomics in the postgenomic natural product discovery pipeline. Proteomics. 2018;18(18):1700332. doi:10.1002/pmic.201700332
  • Patel H, Whitehouse DB. 4 Microbial Proteomics In: Rapley R, editor. Genomics and Clinical Diagnostics. 2019:103.
  • Blundon M, Ganesan V, Redler B, Van PT, Minden JS. Two–dimensional differencegel electrophoresis Methods Mol Biol. 2019;1855:229–247.30426421
  • Magdeldin S, Enany S, Yoshida Y, et al. Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11(1):16. doi:10.1186/1559-0275-11-1624735559
  • Drabik A, Bodzoń-Kułakowska A, Silberring J. Gel electrophoresis In: Silberring PC, editor. Proteomic Profiling and Analytical Chemistry. Elsevier; 2016:115–143.
  • May C, Brosseron F, Chartowski P, Meyer HE, Marcus K. Differential proteome analysis using 2D-DIGE Methods Mol Biol. 2012;893:75–82.22665295
  • Novotny MV, Alley WR, Mann BF. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj J. 2013;30(2):89–117. doi:10.1007/s10719-012-9444-822945852
  • Venne AS, Kollipara L, Zahedi RP. The next level of complexity: crosstalk of posttranslational modifications. Proteomics. 2014;14(4–5):513–524. doi:10.1002/pmic.20130034424339426
  • Di Venere M, Viglio S, Sassera D, et al. Do the complementarities of electrokinetic and chromatographic procedures represent the “Swiss knife” in proteomic investigation? An overview of the literature in the past decade. Electrophoresis. 2017;38(12):1538–1550. doi:10.1002/elps.20160050428130906
  • Johnson N, Březinová J, Stephens E, et al. Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci Rep. 2017;7(1):7283. doi:10.1038/s41598-017-07556-328779096
  • Bespyatykh J, Smolyakov A, Guliaev A, et al. Proteogenomic analysis of Mycobacterium tuberculosis Beijing B0/W148 cluster strains. J Proteomics. 2019;192:18–26. doi:10.1016/j.jprot.2018.07.00230009986
  • Huang EL, Lefsrud MG. Temporal analysis of xylose fermentation by Scheffersomyces stipitis using shotgun proteomics. J Ind Microbiol Biotechnol. 2012;39(10):1507–1514. doi:10.1007/s10295-012-1147-422638791
  • Liu X, Hu Y, Pai P-J, Chen D, Lam H. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. J Proteome Res. 2014;13(3):1223–1233. doi:10.1021/pr400669d24156611
  • Kamaladevi A, Balamurugan K. Global proteomics revealed Klebsiella pneumoniae induced autophagy and oxidative stress in caenorhabditis elegans by inhibiting PI3K/AKT/mTOR pathway during infection. Front Cell Infect Microbiol. 2017;7:393. doi:10.3389/fcimb.2017.0039328932706
  • Dayon L, Sanchez J-C. Relative protein quantification by MS/MS using the tandem mass tag technology Methods Mol Biol. 2012;893:115–127.22665298
  • Han J, Yi S, Zhao X, et al. Improved SILAC method for double labeling of bacterial proteome. J Proteomics. 2019;194:89–98. doi:10.1016/j.jprot.2018.12.01130553074
  • Wang B, Hom G, Zhou S, et al. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell. 2017;16(2):244–261.28177569
  • Rauniyar N, Yates III JR. Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res. 2014;13(12):5293–5309. doi:10.1021/pr500880b25337643
  • Lottspeich F, Kellermann J. ICPL labeling strategies for proteome research Methods Mol Biol. 2011;753:55–64.21604115
  • Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal. 2015;113:2–20. doi:10.1016/j.jpba.2015.04.01325956803
  • Xu J, Wang H, Kong D 2-DE Compared with iTRAQ-based proteomic analysis of the functional regulation of proteins in Rhodococcus sp. BAP-1 response to fluoranthene. Paper presented at: IOP Conference Series: Earth and Environmental Science; 2018;111:012032.
  • Syahir A, Usui K, Tomizaki K-Y, Kajikawa K, Mihara H. Label and label-free detection techniques for protein microarrays. Microarrays. 2015;4(2):228–244. doi:10.3390/microarrays402022827600222
  • Krizman DB, Hembrough T, Thyparambil S, Liao W-L. SRM/MRM Assay for the GTPase KRas Protein (Kras). Google Patents; 2017.
  • Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother. 2017;72(2):354–364. doi:10.1093/jac/dkw45027999068
  • Bonar E, Wójcik I, Wladyka B. Proteomics in studies of Staphylococcus aureus virulence. Acta Biochim Pol. 2015;62(3):367–381. doi:10.18388/abp.2015_108326307769
  • Neilson KA, Ali NA, Muralidharan S, et al. Less label, more free: approaches in label free quantitative mass spectrometry. Proteomics. 2011;11(4):535–553. doi:10.1002/pmic.20100055321243637
  • Zhang Y, Wen Z, Washburn MP, Florens L. Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance. Anal Chem. 2015;87(9):4749–4756. doi:10.1021/ac504740p25839423
  • Greco V, Piras C, Pieroni L, et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics. 2018;15(8):683–696. doi:10.1080/14789450.2018.150551030058389
  • Schlichtemeier SM, Nahm CB, Xue A, Gill AJ, Smith RC, Hugh TJ. SELDI-TOF MS analysis of hepatocellular carcinoma in an Australian cohort. J Surg Res. 2019;238:127–136. doi:10.1016/j.jss.2019.01.00830771682
  • Anand S, Samuel M, Ang C-S, Keerthikumar S, Mathivanan S. Label-Based and Label-free strategies for protein quantitation Methods Mol Biol. 2017;1549:31–43.27975282
  • Bereman MS. Tools for monitoring system suitability in LC MS/MS centric proteomic experiments. Proteomics. 2015;15(5–6):891–902. doi:10.1002/pmic.20140037325327420
  • Alreshidi MM, Dunstan RH, Macdonald MM, Smith ND, Gottfries J, Roberts TK. Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J Proteomics. 2015;121:44–55. doi:10.1016/j.jprot.2015.03.01025782752
  • Tsou -C-C, Tsai C-F, Tsui Y-H, et al. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics. 2010;9(1):131–144. doi:10.1074/mcp.M900177-MCP20019752006
  • Kind T, Tsugawa H, Cajka T, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37(4):513–532. doi:10.1002/mas.2153528436590
  • Paul D, Kumar A, Gajbhiye A, Santra MK, Srikanth R. Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. Biomed Res Int. 2013;2013:1–16. doi:10.1155/2013/783131
  • Matsumoto M, Matsuzaki F, Oshikawa K, et al. A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods. 2017;14(3):251. doi:10.1038/nmeth.411628267743
  • Lee M-Y, Huang C-H, Kuo C-J, Lin C-LS, Lai W-T, Chiou S-H. Clinical proteomics identifies urinary CD14 as a potential biomarker for diagnosis of stable coronary artery disease. PLoS One. 2015;10(2):e0117169. doi:10.1371/journal.pone.011716925668619
  • Greco TM, Cristea IM. Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics. 2017;16(4 suppl 1):S5–S14. doi:10.1074/mcp.O116.06600128163258
  • Ayres JS. Cooperative microbial tolerance behaviors in host-microbiota mutualism. Cell. 2016;165(6):1323–1331. doi:10.1016/j.cell.2016.05.04927259146
  • Goodman AG, Rasmussen AL. Host-pathogen interactions during arboviral infections. Front Cell Infect Microbiol. 2019;9:77. doi:10.3389/fcimb.2019.0007730972308
  • Federspiel JD, Cristea IM. Considerations for identifying endogenous protein complexes from tissue via immunoaffinity purification and quantitative mass Spectrometry Methods Mol Biol. 2019;1977:115–143.30980326
  • Vinayagam A, Gibson TE, Lee H-J, et al. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc Natl Acad Sci. 2016;113(18):4976–4981. doi:10.1073/pnas.160399211327091990
  • Auweter SD, Bhavsar AP, de Hoog CL, et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem. 2011;286(27):24023–24035. doi:10.1074/jbc.M111.22460021566117
  • Joshi P, Greco TM, Guise AJ, et al. The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol. 2013;9(1). doi:10.1038/msb.2013.26
  • Fels U, Gevaert K, Van Damme P. Proteogenomics in aid of host–pathogen interaction studies: a bacterial perspective. Proteomes. 2017;5(4):26. doi:10.3390/proteomes5040026
  • Armean IM, Lilley KS, Trotter MW. Popular computational methods to assess multiprotein complexes derived from label-free affinity purification and mass spectrometry (AP-MS) experiments. Mol Cell Proteomics. 2013;12(1):1–13. doi:10.1074/mcp.R112.01955423071097
  • Choi H, Larsen B, Lin Z-Y, et al. SAINT: probabilistic scoring of affinity purification–mass spectrometry data. Nat Methods. 2011;8(1):70. doi:10.1038/nmeth.154121131968
  • Mellacheruvu D, Wright Z, Couzens AL, et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat Methods. 2013;10(8):730. doi:10.1038/nmeth.255723921808
  • Ashford P, Hernandez A, Greco TM, et al. HVint: a strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. Mol Cell Proteomics. 2016;15(9):2939–2953. doi:10.1074/mcp.M116.05855227384951
  • Miteva YV, Budayeva HG, Cristea IM. Proteomics-based methods for discovery, quantification, and validation of protein–protein interactions. Anal Chem. 2013;85(2):749–768. doi:10.1021/ac303325723157382
  • Toby TK, Fornelli L, Kelleher NL. Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem. 2016;9:499–519. doi:10.1146/annurev-anchem-071015-041550
  • Konijnenberg A, Bannwarth L, Yilmaz D, Koçer A, Venien Bryan C, Sobott F. Top down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci. 2015;24(8):1292–1300. doi:10.1002/pro.270325970171
  • Shoemaker GK, van Duijn E, Crawford SE, et al. Norwalk virus assembly and stability monitored by mass spectrometry. Mol Cell Proteomics. 2010;9(8):1742–1751.20418222
  • Uetrecht C, Barbu IM, Shoemaker GK, Van Duijn E, Heck AJ. Interrogating viral capsid assembly with ion mobility–mass spectrometry. Nat Chem. 2011;3(2):126. doi:10.1038/nchem.94721258385
  • Calderwood MA, Venkatesan K, Xing L, et al. Epstein–Barr virus and virus human protein interaction maps. Proc Natl Acad Sci. 2007;104(18):7606–7611. doi:10.1073/pnas.070233210417446270
  • Blasche S, Arens S, Ceol A, et al. The EHEC-host interactome reveals novel targets for the translocated intimin receptor. Sci Rep. 2014;4:7531. doi:10.1038/srep0753125519916
  • Ciferri C, Chandramouli S, Leitner A, et al. Antigenic characterization of the HCMV gH/gL/gO and pentamer cell entry complexes reveals binding sites for potently neutralizing human antibodies. PLoS Pathog. 2015;11(10):e1005230. doi:10.1371/journal.ppat.100523026485028
  • Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci. 2016;41(1):20–32. doi:10.1016/j.tibs.2015.10.00826654279
  • Schweppe DK, Harding C, Chavez JD, et al. Host-microbe protein interactions during bacterial infection. Chem Biol. 2015;22(11):1521–1530. doi:10.1016/j.chembiol.2015.09.01526548613
  • Tandon R, Mocarski ES. Viral and host control of cytomegalovirus maturation. Trends Microbiol. 2012;20(8):392–401. doi:10.1016/j.tim.2012.04.00822633075
  • Janssens S, Pulendran B, Lambrecht BN. Emerging functions of the unfolded protein response in immunity. Nat Immunol. 2014;15(10):910. doi:10.1038/ni.299125232821
  • Weekes MP, Tomasec P, Huttlin EL, et al. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell. 2014;157(6):1460–1472. doi:10.1016/j.cell.2014.04.02824906157
  • Fraisier C, Koraka P, Belghazi M, et al. Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One. 2014;9(3):e91397. doi:10.1371/journal.pone.009139724618821
  • Lopez V, Villar M, Queiros J, et al. Comparative proteomics identifies host immune system proteins affected by infection with Mycobacterium bovis. PLoS Negl Trop Dis. 2016;10(3):e0004541. doi:10.1371/journal.pntd.000454127027307
  • Abere B, Wikan N, Ubol S, et al. Proteomic analysis of chikungunya virus infected microgial cells. PLoS One. 2012;7(4):e34800. doi:10.1371/journal.pone.003480022514668
  • Beltran PMJ, Mathias RA, Cristea IM. A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst. 2016;3(4):361–373 e366. doi:10.1016/j.cels.2016.08.01227641956
  • Grabowski JM, Perera R, Roumani AM, et al. Changes in the proteome of Langat-infected Ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl Trop Dis. 2016;10(2):e0004180. doi:10.1371/journal.pntd.000418026859745
  • Diamond DL, Syder AJ, Jacobs JM, et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 2010;6(1):e1000719.20062526
  • PFo S, McCorrister S, Hu P, et al. Highly pathogenic H5N1 and novel H7N9 influenza A viruses induce more profound proteomic host responses than seasonal and pandemic H1N1 strains. J Proteome Res. 2015;14(11):4511–4523. doi:10.1021/acs.jproteome.5b0019626381135
  • Ding X, Lu J, Yu R, et al. Preliminary proteomic analysis of A549 cells infected with avian influenza virus H7N9 and influenza A virus H1N1. PLoS One. 2016;11(5):e0156017. doi:10.1371/journal.pone.015601727223893
  • Wood JJ, Boyne JR, Paulus C, et al. ARID3B: a novel regulator of the Kaposi’s sarcoma-associated herpesvirus lytic cycle. J Virol. 2016;90(20):9543–9555. doi:10.1128/JVI.03262-1527512077
  • Shen S, Li J, Hilchey S, et al. Ion-current-based temporal proteomic profiling of influenza-a-virus-infected mouse lungs revealed underlying mechanisms of altered integrity of the lung microvascular barrier. J Proteome Res. 2016;15(2):540–553. doi:10.1021/acs.jproteome.5b0092726650791
  • Vogels MW, van Balkom BW, Heck AJ, et al. Quantitative proteomic identification of host factors involved in the Salmonella typhimurium infection cycle. Proteomics. 2011;11(23):4477–4491. doi:10.1002/pmic.20110022421919203
  • Kaloyanova D, Vogels M, van Balkom BW, Helms JB. Quantitative proteomic identification of host factors involved in the Salmonella typhimurium infection cycle Methods Mol Biol. 2015;1225:29–45.25253246
  • Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neurovirol. 2016;22(5):564–574. doi:10.1007/s13365-016-0424-926843384
  • Wu X, Wang H, Bai L, et al. Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus. J Proteomics. 2013;91:136–150. doi:10.1016/j.jprot.2013.06.03723856606
  • Gudleski-O’Regan N, Greco TM, Cristea IM, Shenk T. Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe. 2012;12(1):86–96. doi:10.1016/j.chom.2012.05.01222817990
  • Hsu J-L, van den Boomen DJ, Tomasec P, et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog. 2015;11(4):e1004811. doi:10.1371/journal.ppat.100481125875600
  • Matheson NJ, Sumner J, Wals K, et al. Cell surface proteomic map of HIV infection reveals antagonism of amino acid metabolism by Vpu and Nef. Cell Host Microbe. 2015;18(4):409–423. doi:10.1016/j.chom.2015.09.00326439863
  • Karniely S, Weekes MP, Antrobus R, et al. Human cytomegalovirus infection upregulates the mitochondrial transcription and translation machineries. MBio. 2016;7(2):e00029–00016. doi:10.1128/mBio.00029-1627025248
  • Itzhak DN, Tyanova S, Cox J, Borner GH. Global, quantitative and dynamic mapping of protein subcellular localization. Elife. 2016;5:e16950. doi:10.7554/eLife.1695027278775
  • Ribet D, Cossart P. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell. 2010;143(5):694–702. doi:10.1016/j.cell.2010.11.01921111231
  • Liao G, Xie L, Li X, Cheng Z, Xie J. Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. J Proteomics. 2014;106:260–269. doi:10.1016/j.jprot.2014.04.01724768905
  • Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z. Comprehensive profiling of protein lysine acetylation in Escherichia coli. J Proteome Res. 2013;12(2):844–851. doi:10.1021/pr300912q23294111
  • Kim D, Yu BJ, Kim JA, et al. The acetylproteome of Gram positive model bacterium Bacillus subtilis. Proteomics. 2013;13(10–11):1726–1736. doi:10.1002/pmic.20120000123468065
  • Rardin MJ, Held JM, Gibson BW. Targeted quantitation of acetylated lysine peptides by selected reaction monitoring mass spectrometry Methods Mol Biol. 2013;1077:121–131.24014403
  • Manteca A, Ye J, Sánchez J, Jensen ON. Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res. 2011;10(12):5481–5492. doi:10.1021/pr200762y21999169
  • Ouidir T, Cosette P, Jouenne T, Hardouin J. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins. Proteomics. 2015;15(13):2152–2157. doi:10.1002/pmic.20150005625900529
  • Sun F, Ding Y, Ji Q, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci. 2012;109(38):15461–15466. doi:10.1073/pnas.120595210922927394
  • Liu F, Yang M, Wang X, et al. Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. Mol Cell Proteomics. 2014;13(12):3352–3366. doi:10.1074/mcp.M114.04196225180227
  • Leach MD, Brown AJ. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot Cell. 2012;11(2):98–108. doi:10.1128/EC.05238-1122158711
  • Croken MM, Nardelli SC, Kim K. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol. 2012;28(5):202–213. doi:10.1016/j.pt.2012.02.00922480826
  • Bagdonaite I, Nordén R, Joshi HJ, et al. Global mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. J Biol Chem. 2016;291(23):12014–12028. doi:10.1074/jbc.M116.72174627129252
  • Kulej K, Avgousti DC, Weitzman MD, Garcia BA. Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics. Methods. 2015;90:8–20. doi:10.1016/j.ymeth.2015.06.00826093074
  • Zielinska DF, Gnad F, Schropp K, Wiśniewski JR, Mann M. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell. 2012;46(4):542–548. doi:10.1016/j.molcel.2012.04.03122633491
  • Udeshi ND, Svinkina T, Mertins P, et al. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000 s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics. 2013;12(3):825–831. doi:10.1074/mcp.O112.02709423266961
  • Hendriks IA, D’souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014;21(10):927. doi:10.1038/nsmb.289025218447
  • Kusebauch U, Campbell DS, Deutsch EW, et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016;166(3):766–778. doi:10.1016/j.cell.2016.06.04127453469
  • Champasa K, Longwell SA, Eldridge AM, Stemmler EA, Dube DH. Targeted identification of glycosylated proteins in the gastric pathogen Helicobacter pylori (Hp). Mol Cell Proteomics. 2013;12(9):2568–2586. doi:10.1074/mcp.M113.02956123754784
  • Engholm-Keller K, Larsen MR. Improving the phosphoproteome coverage for limited sample amounts using TiO2-SIMAC-HILIC (TiSH) phosphopeptide enrichment and fractionation Methods Mol Biol. 2016;1355:161–177.26584925
  • Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11(11):1114. doi:10.1038/nmeth.314425357241
  • Abd-Alla AM, Kariithi HM, Cousserans F, et al. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach. J Gen Virol. 2016;97(4):1010. doi:10.1099/jgv.0.00040926801744
  • Miranda-CasoLuengo AA, Staunton PM, Dinan AM, Lohan AJ, Loftus BJ. Functional characterization of the Mycobacterium abscessus genome coupled with condition specific transcriptomics reveals conserved molecular strategies for host adaptation and persistence. BMC Genomics. 2016;17(1):553. doi:10.1186/s12864-016-2868-y27495169
  • Fan J, Saha S, Barker G, et al. Galaxy integrated omics: web-based standards-compliant workflows for proteomics informed by transcriptomics. Mol Cell Proteomics. 2015;14(11):3087–3093. doi:10.1074/mcp.O115.04877726269333
  • Khatri K, Klein JA, White MR, et al. Integrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactions. Mol Cell Proteomics. 2016;15(6):1895–1912. doi:10.1074/mcp.M116.05801626984886
  • Chen W-H, van Noort V, Lluch-Senar M, et al. Integration of multi-omics data of a genome-reduced bacterium: prevalence of post-transcriptional regulation and its correlation with protein abundances. Nucleic Acids Res. 2016;44(3):1192–1202. doi:10.1093/nar/gkw00426773059
  • Gorenshteyn D, Zaslavsky E, Fribourg M, et al. Interactive big data resource to elucidate human immune pathways and diseases. Immunity. 2015;43(3):605–614. doi:10.1016/j.immuni.2015.08.01426362267
  • Kühner S, van Noort V, Betts MJ, et al. Proteome organization in a genome-reduced bacterium. Science. 2009;326(5957):1235–1240. doi:10.1126/science.117634319965468
  • Mirrashidi KM, Elwell CA, Verschueren E, et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe. 2015;18(1):109–121. doi:10.1016/j.chom.2015.06.00426118995
  • Miersch S, LaBaer J. Nucleic acid programmable protein arrays: versatile tools for array‐based functional protein studies. Curr Protoc Protein Sci. 2011;64(1):27.22.21–27.22. 26.
  • Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics. 2017;14(9):779–797. doi:10.1080/14789450.2017.136560328786313
  • Vranakis I, Goniotakis I, Psaroulaki A, et al. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics. 2014;97:88–99. doi:10.1016/j.jprot.2013.10.02724184230
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi:10.1016/S1473-3099(13)70318-924252483
  • Chen B, Zhang D, Wang X, et al. Proteomics progresses in microbial physiology and clinical antimicrobial therapy. Eur J Clin Microbiol Infect Dis. 2017;36(3):403–413. doi:10.1007/s10096-016-2816-427812806
  • Karlsson C, Malmström L, Aebersold R, Malmström J. Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes. Nat Commun. 2012;3:1301. doi:10.1038/ncomms229723250431
  • Schneider T, Riedel K. Environmental proteomics: analysis of structure and function of microbial communities. Proteomics. 2010;10(4):785–798. doi:10.1002/pmic.20090045019953545
  • Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. doi:10.1101/cshperspect.a02524727329032
  • Dam S, Pagès J-M, Masi M. Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae 2 3. Microbiology. 2018;164(3):260–267. doi:10.1099/mic.0.00061329458656
  • Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted proteomics for studying pathogenic bacteria. Proteomics. 2019;19(16):1800435. doi:10.1002/pmic.201800435
  • Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300. doi:10.4103/joacp.JOACP_349_1529109626
  • Blair JM, Bavro VN, Ricci V, et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci. 2015;112(11):3511–3516. doi:10.1073/pnas.141993911225737552
  • Pérez-Llarena FJ, Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front Microbiol. 2016;7:410. doi:10.3389/fmicb.2016.0041027065974
  • Vala MH, Hallajzadeh M, Hashemi A, et al. Detection of Ambler class A, B and D ß-lactamases among Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from burn patients. Ann Burns Fire Disasters. 2014;27(1):8.25249841
  • Park AJ, Surette MD, Khursigara CM. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm. Front Microbiol. 2014;5:464. doi:10.3389/fmicb.2014.0046425232353
  • Dos Santos KV, Diniz CG, de Castro Veloso L, et al. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010;161(4):268–275. doi:10.1016/j.resmic.2010.03.00620381611
  • Chaussee MA, McDowell EJ, Rieck LD, Callegari EA, Chaussee MS. Proteomic analysis of a penicillin-tolerant rgg mutant strain of Streptococcus pyogenes. J Antimicrob Chemother. 2006;58(4):752–759. doi:10.1093/jac/dkl31916891633
  • Monteiro R, Vitorino R, Domingues P, et al. Proteome of a methicillin-resistant Staphylococcus aureus clinical strain of sequence type ST398. J Proteomics. 2012;75(10):2892–2915. doi:10.1016/j.jprot.2011.12.03622245554
  • Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res. 2014;13(6):2954–2972. doi:10.1021/pr500107p24708102
  • Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol. 2014;5:512. doi:10.3389/fmicb.2014.0051225309531
  • Lebreton F, Cattoir V. Resistance to Glycopeptide Antibiotics In: Bonev BB, Brown NM, editors. Bacterial Resistance to Antibiotics: From Molecules to Man. 2019:8051.
  • Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12(10):1221–1236. doi:10.1586/14787210.2014.95609225199988
  • Lima TB, Pinto MFS, Ribeiro SM, et al. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J. 2013;27(4):1291–1303. doi:10.1096/fj.12-22112723349550
  • Wang X, He X, Jiang Z, et al. Proteomic analysis of the Enterococcus faecalis V583 strain and clinical isolate V309 under vancomycin treatment. J Proteome Res. 2010;9(4):1772–1785. doi:10.1021/pr901216e20128627
  • Ramos S, Chafsey I, Silva N, et al. Effect of vancomycin on the proteome of the multiresistant Enterococcus faecium SU18 strain. J Proteomics. 2015;113:378–387. doi:10.1016/j.jprot.2014.10.01225449832
  • Chen H, Liu Y, Zhao C, et al. Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One. 2013;8(6):e66880. doi:10.1371/journal.pone.006688023840544
  • Dabul ANG, Kos VN, Gilmore MS, Camargo IL. Draft genome sequence of methicillin-resistant Staphylococcus aureus strain SA16, representative of an endemic clone from a Brazilian hospital. Genome Announc. 2013;1(5):e00754–00713. doi:10.1128/genomeA.00754-1324051324
  • Müller A, Grein F, Otto A, et al. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int J Med Microbiol. 2018;308(3):335–348. doi:10.1016/j.ijmm.2017.12.00229429584
  • Yu R, Dale SE, Yamamura D, Stankus V, Lee C. Daptomycin-nonsusceptible, vancomycin-intermediate, methicillin-resistant Staphylococcus aureus endocarditis. Can J Infect Dis Med Microbiol. 2012;23(2):e48–e50. doi:10.1155/2012/13847023730321
  • Fischer A, Yang S-J, Bayer AS, et al. Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach. J Antimicrob Chemother. 2011;66(8):1696–1711. doi:10.1093/jac/dkr19521622973
  • Wecke T, Zühlke D, Mäder U, et al. Daptomycin versus friulimicin B: in-depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob Agents Chemother. 2009;53(4):1619–1623. doi:10.1128/AAC.01046-0819164157
  • Reyes J, Panesso D, Tran TT, et al. A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis. J Infect Dis. 2015;211(8):1317–1325. doi:10.1093/infdis/jiu60225362197
  • Yahav D, Farbman L, Leibovici L, Paul M. Colistin: new lessons on an old antibiotic. Clin Microbiol Infect. 2012;18(1):18–29. doi:10.1111/j.1469-0691.2011.03734.x22168320
  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42. doi:10.1038/nrmicro338025435309
  • Aghapour Z, Gholizadeh P, Ganbarov K, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019;12:965. doi:10.2147/IDR.S19984431190901
  • Li H, Wang Y, Meng Q, et al. Comprehensive proteomic and metabolomic profiling of mcr-1-mediated colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2019;53(6):795–804. doi:10.1016/j.ijantimicag.2019.02.01430811973
  • Chua SL, Tan S-Y-Y, Rybtke MT, et al. Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(5):2066–2075. doi:10.1128/AAC.02499-1223403434
  • da Cunha NB, Cobacho NB, Viana JF, et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today. 2017;22(2):234–248. doi:10.1016/j.drudis.2016.10.01727890668
  • Chiu Y, Kuo TY, Lin CC, Chen WJ. Proteomic analysis reveals responsive proteins of Vibrio parahaemolyticus on exposure to cationic antimicrobial peptides. J Appl Microbiol. 2011;110(1):80–89. doi:10.1111/j.1365-2672.2010.04856.x20880213
  • Chowdhury MH, Diamond G, Ryan LK. 11 Synergy of Antimicrobial Peptides In: Wang G, editor. Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies. 2017 Vol. 188.
  • Chernov VM, Chernova OA, Mouzykantov AA, et al. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol Lett. 2018;365(18):fny185. doi:10.1093/femsle/fny185
  • Shen CJ, Kuo TY, Lin CC, Chow LP, Chen WJ. Proteomic identification of membrane proteins regulating antimicrobial peptide resistance in Vibrio parahaemolyticus. J Appl Microbiol. 2010;108(4):1398–1407. doi:10.1111/j.1365-2672.2009.04544.x19796120
  • Maria-Neto S, de Souza Cândido E, Rodrigues DR, et al. Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother. 2012;56(4):1714–1724. doi:10.1128/AAC.05558-1122290970
  • Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–596. doi:10.1128/CMR.00064-1628275006
  • Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–535. doi:10.1016/j.ijantimicag.2016.11.02928163137
  • De Majumdar S, Yu J, Fookes M, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015;11(1):e1004627. doi:10.1371/journal.ppat.100462725633080
  • Zhang YF, Han K, Chandler CE, Tjaden B, Ernst RK, Lory S. Probing the sRNA regulatory landscape of P. aeruginosa: post transcriptional control of determinants of pathogenicity and antibiotic susceptibility. Mol Microbiol. 2017;106(6):919–937. doi:10.1111/mmi.1385728976035
  • Dinos G, Athanassopoulos C, Missiri D, et al. Chloramphenicol derivatives as antibacterial and anticancer agents: historic problems and current solutions. Antibiotics. 2016;5(2):20. doi:10.3390/antibiotics5020020
  • Roberts MC, Schwarz S. Tetracycline and chloramphenicol resistance mechanisms In: Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim, D, editors. Antimicrobial Drug Resistance. Springer; 2017:231–243.
  • Li H, Lin X-M, Wang S-Y, Peng X-X. Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli. J Proteome Res. 2007;6(9):3628–3636. doi:10.1021/pr070307y17711325
  • Zhang QS, Ye C, Yang X. Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii. Front Microbiol. 2019;10:1379. doi:10.3389/fmicb.2019.0137931275290
  • Biot FV, Valade E, Garnotel E, et al. Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: proteomic and mechanistic evidence. PLoS One. 2011;6(2):e16892. doi:10.1371/journal.pone.001689221347382
  • Peng B, Wang C, Li H, et al. Outer membrane proteins form specific patterns in antibiotic-resistant Edwardsiella tarda. Front Microbiol. 2017;8:69. doi:10.3389/fmicb.2017.0006928210241
  • Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012;56(2):603–612. doi:10.1128/AAC.05702-1122143525
  • Voigt B, Albrecht D, Dalhoff A. Mode of action of MCB3681 in Staphylococcus aureus–a proteomic study. Arch Clin Microbiol. 2016;7(6). doi:10.4172/1989-8436.100061
  • Feng J, Billal DS, Lupien A, et al. Proteomic and transcriptomic analysis of linezolid resistance in Streptococcus pneumoniae. J Proteome Res. 2011;10(10):4439–4452. doi:10.1021/pr200221s21875071
  • Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. doi:10.1101/cshperspect.a02538726989065
  • Falagas ME, Vardakas KZ, Kapaskelis A, Triarides NA, Roussos NS. Tetracyclines for multidrug-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents. 2015;45(5):455–460. doi:10.1016/j.ijantimicag.2014.12.03125801348
  • Yun SH, Park EC, Lee S-Y, et al. Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clin Proteomics. 2018;15(1):28. doi:10.1186/s12014-018-9204-230186054
  • Lin X, Kang L, Li H, Peng X. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress. Mol Biosyst. 2014;10(4):901–908. doi:10.1039/C3MB70522F24510206
  • Kudo F, Eguchi T. Aminoglycoside antibiotics: new insights into the biosynthetic machinery of old drugs. Chem Rec. 2016;16(1):4–18. doi:10.1002/tcr.20150021026455715
  • Jackson J, Chen C, Buising K. Aminoglycosides: how should we use them in the 21st century? Curr Opin Infect Dis. 2013;26(6):516–525. doi:10.1097/QCO.000000000000001224141453
  • Ma Y, Guo C, Li H, Peng X-X. Low abundance of respiratory nitrate reductase is essential for Escherichia coli in resistance to aminoglycoside and cephalosporin. J Proteomics. 2013;87:78–88. doi:10.1016/j.jprot.2013.05.01923711407
  • Nabu S, Lawung R, Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Roytrakul S, Prachayasittikul V. Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin. J Med Microbiol. 2014;63(3):371–385. doi:10.1099/jmm.0.067595-024567501
  • Al-Majdoub ZM, Owoseni A, Gaskell SJ, Barber J. Effects of gentamicin on the proteomes of aerobic and oxygen-limited Escherichia coli. J Med Chem. 2013;56(7):2904–2910. doi:10.1021/jm301858u23517076
  • Zhang D-F, Li H, Lin X-M, Peng X-X. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol Lett. 2015;362(11). doi:10.1093/femsle/fnv074
  • Hu Y, Zhang M, Lu B, Dai J. Helicobacter pylori and antibiotic resistance, a continuing and intractable problem. Helicobacter. 2016;21(5):349–363. doi:10.1111/hel.1229926822340
  • Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12(1):35. doi:10.1038/nrmicro315524336183
  • Cornick J, Bentley S. Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect. 2012;14(7–8):573–583. doi:10.1016/j.micinf.2012.01.01222342898
  • Cash P, Argo E, Ford L, Lawrie L, McKenzie H. A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis. 1999;20(11):2259–2268. doi:10.1002/(SICI)1522-2683(19990801)20:11<2259::AID-ELPS2259>3.0.CO;2-F10493130
  • Smiley R, Bailey J, Sethuraman M, Posecion N, Ali MS. Comparative proteomics analysis of sarcosine insoluble outer membrane proteins from clarithromycin resistant and sensitive strains of Helicobacter pylori. J Microbiol. 2013;51(5):612–618. doi:10.1007/s12275-013-3029-524173641
  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438–445. doi:10.1016/j.tim.2014.04.00724842194
  • Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6(9):a025320. doi:10.1101/cshperspect.a02532027449972
  • Drlica K, Zhao X, Malik M, Hiasa H, Mustaev A, Kerns R. Fluoroquinolone Resistance In: Bonev BB, Brown NM,editors. Bacterial Resistance to Antibiotics: From Molecules to Man. 2019:8125.
  • Coldham NG, Randall LP, Piddock LJ, Woodward MJ. Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2006;58(6):1145–1153. doi:10.1093/jac/dkl41317062612
  • Vranakis I, De Bock P-J, Papadioti A, et al. Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii. J Proteome Res. 2011;10(2):756–762. doi:10.1021/pr100906v21070068
  • Lin X-M, Li H, Wang C, Peng X-X. Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. J Proteome Res. 2008;7(6):2399–2405. doi:10.1021/pr800073c18438992
  • Reeves PT. Antibiotics: groups and properties In: Wang J, MacNeil JD, Kay JF, editors. Chemical Analysis of Antibiotic Residues in Food. New Jersey (USA): Wiley Publishing; 2012:30–31.
  • Huang C-H, Chuang M-H, Lo W-L, et al. Alkylhydroperoxide reductase of Helicobacter pylori as a biomarker for gastric patients with different pathological manifestations. Biochimie. 2011;93(7):1115–1123. doi:10.1016/j.biochi.2011.03.00821440595
  • Isidro J, Mendes AL, Serrano M, Henriques AO, Oleastro M. Overview of clostridium difficile infection: life cycle, epidemiology, antimicrobial resistance and treatment In: Clostridium Difficile-A Comprehensive Overview. IntechOpen; 2017.
  • Chong PM, Lynch T, McCorrister S, et al. Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One. 2014;9(1):e82622. doi:10.1371/journal.pone.008262224400070
  • Goldstein BP. Resistance to rifampicin: a review. J Antibiot. 2014;67(9):625. doi:10.1038/ja.2014.10725118103
  • Cai X-C, Xi H, Liang L, et al. Rifampicin-resistance mutations in the rpoB gene in Bacillus velezensis CC09 have pleiotropic effects. Front Microbiol. 2017;8:178. doi:10.3389/fmicb.2017.0017828243227
  • Fajardo-Cavazos P, Leehan JD, Nicholson WL. Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilis rpoB gene after cultivation in the human spaceflight environment. Front Microbiol. 2018;9:192. doi:10.3389/fmicb.2018.0019229491852
  • Neri A, Mignogna G, Fazio C, Giorgi A, Schininà ME, Stefanelli P. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed. BMC Microbiol. 2010;10(1):246. doi:10.1186/1471-2180-10-24620868485
  • Sandalakis V, Psaroulaki A, De Bock P-J, et al. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res. 2012;11(4):2374–2385. doi:10.1021/pr201122w22360387
  • Johansen TB, Scheffer L, Jensen VK, Bohlin J, Feruglio SL. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci Rep. 2018;8(1):8538. doi:10.1038/s41598-018-26906-329867163
  • Provenzano JC, JF S, Rôças IN, Domingues RR, Leme AFP, Silva MR. Metaproteome analysis of endodontic infections in association with different clinical conditions. PLoS One. 2013;8(10):e76108. doi:10.1371/journal.pone.007610824143178
  • Wang Y, Huang K-Y, Huo Y. Proteomic comparison between Salmonella Typhimurium and Salmonella Typhi. J Microbiol. 2014;52(1):71–76. doi:10.1007/s12275-014-3204-324390840