1,071
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic E. coli Isolated from Egyptian Patients with Different Clinical Infections

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1221-1236 | Published online: 28 Apr 2020

References

  • Chapman TA, Wu X-Y, Barchia I, et al. Comparison of virulence gene profiles of escherichia coli strains isolated from healthy and diarrheic swine. Appl Environ Microbiol. 2006;72(7):4782. doi:10.1128/AEM.02885-0516820472
  • Poey ME, Albini M, Saona G, Laviña M. Virulence profiles in uropathogenic Escherichia coli isolated from pregnant women and children with urinary tract abnormalities. Microb Pathog. 2012;52(5):292–301. doi:10.1016/j.micpath.2012.02.00622406645
  • Micenková L, Beňová A, Frankovičová L, et al. Human Escherichia coli isolates from hemocultures: septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol. 2017;307(3):182–189. doi:10.1016/j.ijmm.2017.02.00328268063
  • Petkovšek Ž, Žgur-Bertok D, Erjavec MS. Colicin insensitivity correlates with a higher prevalence of extraintestinal virulence factors among Escherichia coli isolates from skin and soft-tissue infections. J Med Microbiol. 2012;61(6):762–765. doi:10.1099/jmm.0.037234-022403139
  • Konisky J. Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol. 1982;36(1):125–144. doi:10.1146/annurev.mi.36.100182.0010136184011
  • Zakharov SD, Zhalnina MV, Sharma O, Cramer WA. The colicin E3 outer membrane translocon: immunity protein release allows interaction of the cytotoxic domain with OmpF porin. Biochemistry. 2006;45(34):10199–10207.16922495
  • Stahl CH, Callaway TR, Lincoln LM, Lonergan SM, Genovese KJ. Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine. Antimicrob Agents Chemother. 2004;48(8):3119–3121. doi:10.1128/AAC.48.8.3119-3121.200415273129
  • Tomita K, Ogawa T, Uozumi T, Watanabe K, Masaki H. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci. 2000;97(15):8278–8283. doi:10.1073/pnas.14021379710880568
  • Azpiroz MF, Laviña M. Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother. 2007;51(7):2412–2419. doi:10.1128/AAC.01606-0617452478
  • Micenková L, Frankovičová L, Jaborníková I, et al. Escherichia coli isolates from patients with inflammatory bowel disease: ExPEC virulence-and colicin-determinants are more frequent compared to healthy controls. Int J Med Microbiol. 2018;308(5):498–504. doi:10.1016/j.ijmm.2018.04.00829735381
  • Mulvey MA. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 2002;4(5):257–271. doi:10.1046/j.1462-5822.2002.00193.x12027955
  • Pal M, Singh S. PCR based detection of adhesive curli gene “crl” and ‘csgA’in avian pathogenic Escherichia coli. Indian J Anim Res. 2007;41(3):226–229.
  • Blum G, Ott M, Lischewski A, et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994;62(2):606–614. doi:10.1128/IAI.62.2.606-614.19947507897
  • Paniagua-Contreras GL, Monroy-Perez E, Rodriguez-Moctezuma JR, Dominguez-Trejo P, Vaca-Paniagua F, Vaca S. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli strains isolated from community-acquired urinary tract infection patients in Mexico. J Microbiol Immunol Infect. 2017;50(4):478–485. doi:10.1016/j.jmii.2015.08.00526433755
  • Chiou -Y-Y, Chen M-J, Chiu N-T, Lin C-Y, Tseng -C-C. Bacterial virulence factors are associated with occurrence of acute pyelonephritis but not renal scarring. J Urol. 2010;184(5):2098–2102. doi:10.1016/j.juro.2010.06.13520850815
  • Miajlovic H, Smith SG. Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett. 2014;354(1):1–9. doi:10.1111/1574-6968.1241924617921
  • Kallau NHG, Wibawan IWT, Lukman DW, Sudarwanto MB. Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. J Adv Vet Anim Res. 2018;5(4):388–396. doi:10.5455/javar.2018.e28931453148
  • Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother. 1988;32(8):1243–1246. doi:10.1128/AAC.32.8.12433056257
  • Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466–475. doi:10.1016/j.mib.2006.08.01116942899
  • Touati A, Benallaoua S, Forte D, Madoux J, Brasme L, De Champs C. First report of CTX-M-15 and CTX-M-3 β-lactamases among clinical isolates of Enterobacteriaceae in Béjaia, Algeria. Int J Antimicrob Agents. 2006;27(5):397–402. doi:10.1016/j.ijantimicag.2005.12.00716621456
  • Poirel L, Girlich D, Naas T, Nordmann P. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid-and integron-located gene. Antimicrob Agents Chemother. 2001;45(2):447–453. doi:10.1128/AAC.45.2.447-453.200111158739
  • Ullah W, Qasim M, Rahman H, et al. CTX-M-15 and OXA-10 beta lactamases in multi drug resistant Pseudomonas aeruginosa: first report from Pakistan. Microb Pathog. 2017;105:240–244. doi:10.1016/j.micpath.2017.02.03928258003
  • Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006. doi:10.1128/JCM.22.6.996-1006.19853905855
  • Kim SH, Kim YH. Escherichia coli O157: h7adherence to HEp-2 cells is implicated with curli expression and outer membrane integrity. J Vet Sci. 2004;5(2):119–124. doi:10.4142/jvs.2004.5.2.11915192338
  • Najar AG, Nejad MM, Mansouri S. The comparison between virulence factors of Escherichia coli isolated from urinary tract infections and feacal flora. Res Pharm Sci. 2007;1(2):99–103.
  • Mansouri S, Norouzi F, Moradi M, Nakhaee N. Comparison of virulence factors among clinical isolates of Pseudomonas aeruginosa producing and non-producing extended spectrum beta-lactamases. Curr Res Bacteriol. 2011;4(3):85–93. doi:10.3923/crb.2011.85.93
  • Mattos-Guaraldi AL, Formiga LCD, Andrade AFB. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol. 1999;38(1):37–42. doi:10.1007/PL000067699841780
  • Maheswari UB, Palvai S, Anuradha PR, Kammili N. Hemagglutination and biofilm formation as virulence markers of uropathogenic Escherichia coli in acute urinary tract infections and urolithiasis. Indian J Urol. 2013;29(4):277–281. doi:10.4103/0970-1591.12009324235787
  • Reichhardt C, Jacobson AN, Maher MC, et al. Congo red interactions with curli-producing E. coli and native curli amyloid fibers. PLoS One. 2015;10(10):e0140388. doi:10.1371/journal.pone.014038826485271
  • Bauer A, Kirby W, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4_ts):493–496. doi:10.1093/ajcp/45.4_ts.4935325707
  • Tzelepi E, Giakkoupi P, Sofianou D, Loukova V, Kemeroglou A, Tsakris A. Detection of extended-spectrum beta-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Clin Microbiol. 2000;38(2):542–546. doi:10.1128/JCM.38.2.542-546.200010655342
  • CLSI. Performance Standards for Antimicrobial Susceptibility Tests. 27th CLSI supplement M100 Wayne, PA, USA: Clinical Laboratory Standards Institute; 2017
  • Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001;Chapter 2:Unit2.4.
  • Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol. 1995;12(2):85–90. doi:10.1111/j.1574-695X.1995.tb00179.x8589667
  • Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181(1):261–272. doi:10.1086/31521710608775
  • Schamberger GP, Diez-Gonzalez F. Characterization of colicinogenic Escherichia coli strains inhibitory to enterohemorrhagic Escherichia coli. J Food Prot. 2004a;67(3):486–492. doi:10.4315/0362-028X-67.3.48615035362
  • Schamberger GP, Phillips RL, Jacobs JL, Diez-Gonzalez F. Reduction of Escherichia coli O157: H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Appl Environ Microbiol. 2004b;70(10):6053–6060. doi:10.1128/AEM.70.10.6053-6060.200415466550
  • Bhattacharjee A, Sen MR, Anupurba S, Prakash P, Nath G. Detection of OXA-2 group extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli from India. J Antimicrob Chemother. 2007;60(3):703–704. doi:10.1093/jac/dkm26717623688
  • Lin SP, Liu MF, Lin CF, Shi ZY. Phenotypic detection and polymerase chain reaction screening of extended-spectrum beta-lactamases produced by Pseudomonas aeruginosa isolates. J Microbiol Immunol Infect. 2012;45(3):200–207. doi:10.1016/j.jmii.2011.11.01522209695
  • Tahamtan Y, Shirazi Z, Pourbakhsh A, et al. Detection of colicin genes by PCR in Escherichia coli isolated from cattle in Shiraz-Iran. Arch Razi Inst. 2012;67(1):63–67.
  • Sambrook J, Russell D. Molecular cloning: a laboratory manual. Mol Cloning a Lab Man. 2001.
  • Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect. 2015;71(6):615–626. doi:10.1016/j.jinf.2015.09.00926409905
  • Lefort A, Panhard X, Clermont O, et al. Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol. 2011;49(3):777–783. doi:10.1128/JCM.01902-1021177892
  • Jauréguy F, Carbonnelle E, Bonacorsi S, et al. Host and bacterial determinants of initial severity and outcome of Escherichia coli sepsis. Clin Microbiol Infect. 2007;13(9):854–862. doi:10.1111/j.1469-0691.2007.01775.x17617183
  • Fakruddin M, Mazumdar RM, Chowdhury A, Mannan KSB. A preliminary study on virulence factors & antimicrobial resistance in extra-intestinal pathogenic Escherichia coli (ExPEC) in Bangladesh. Indian J Med Res. 2013;137(5):988–990.23760389
  • Shruthi N, Kumar R. Phenotypic study of virulence factors in Escherichia coli isolated from antenatal cases, catheterized patients, and faecal flora. J Clin Diagn Res. 2012;6(10):1699–1703. doi:10.7860/JCDR/2012/4669.263423373032
  • Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S. In vitro biofilm formation of commensal and pathogenic escherichia coli strains: impact of environmental and genetic factors. J Bacteriol. 2006;188(10):3572–3581. doi:10.1128/JB.188.10.3572-3581.200616672611
  • Samie A, Nkgau T. Biofilm production and antibiotic susceptibility profile of Escherichia coli isolates from HIV and AIDS patients in the Limpopo Province. Afr J Biotechnol. 2012;11(34):8560–8570. doi:10.5897/AJB11.2865
  • Fujishige A, Smith KR, Silen JL, Agard DA. Correct folding of alpha-lytic protease is required for its extracellular secretion from Escherichia coli. J Cell Biol. 1992;118(1):33–42. doi:10.1083/jcb.118.1.331618906
  • Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz. 1996;91(6):755–760. doi:10.1590/S0074-027619960006000209283660
  • Hahn-Löbmann S, Stephan A, Schulz S, et al. Colicins and Salmocins – new classes of plant-made non-antibiotic food antibacterials. Front Plant Sci. 2019;10:437. doi:10.3389/fpls.2019.0043731024601
  • Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog. 2009;47(5):274–280. doi:10.1016/j.micpath.2009.09.00319744552
  • Rijavec M, Budič M, Mrak P, Müller-Premru M, Podlesek Z, Žgur-Bertok D. Prevalence of ColE1-like plasmids and colicin K production among uropathogenic Escherichia coli strains and quantification of inhibitory activity of colicin K. Appl Environ Microbiol. 2007;73(3):1029–1032. doi:10.1128/AEM.01780-0617122402
  • Davies D, Falkiner F, Hardy K. Colicin V production by clinical isolates of Escherichia coli. Infect Immun. 1981;31(2):574–579. doi:10.1128/IAI.31.2.574-579.19817012013
  • Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol. 2016;16(1):218. doi:10.1186/s12866-016-0835-z27646192
  • Budič M, Rijavec M, Petkovšek Ž, Žgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One. 2011;6(12):e28769. doi:10.1371/journal.pone.002876922205967
  • Šmajs D, Micenková L, Šmarda J, et al. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10(1):288. doi:10.1186/1471-2180-10-28821078157
  • Ozanne G, Mathieu L, Baril J. Production of colicin V in vitro and in vivo and observations on its effects in experimental animals. Infect Immun. 1977;17(3):497–503. doi:10.1128/IAI.17.3.497-503.1977332624
  • Smith HW. A search for transmissible pathogenic characters in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical, with colicine V. Microbiology. 1974;83(1):95–111.
  • Cergole-Novella MC, Pignatari AC, Guth BE. Adhesion, biofilm and genotypic characteristics of antimicrobial resistant Escherichia coli isolates. Braz J Microbiol. 2015;46(1):167–171. doi:10.1590/S1517-83824612014007726221104
  • Malekzadegan Y, Khashei R, Sedigh Ebrahim-Saraie H, Jahanabadi Z. Distribution of virulence genes and their association with antimicrobial resistance among uropathogenic Escherichia coli isolates from Iranian patients. BMC Infect Dis. 2018;18(1):572. doi:10.1186/s12879-018-3467-030442101
  • Lee J, Subhadra B, Son YJ, et al. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Lett Appl Microbiol. 2016;62(1):84–90. doi:10.1111/lam.1251726518617
  • Gao Q, Zhang D, Ye Z, et al. Virulence traits and pathogenicity of uropathogenic Escherichia coli isolates with common and uncommon O serotypes. Microb Pathog. 2017;104:217–224. doi:10.1016/j.micpath.2017.01.02728104383
  • Tabasi M, Karam MRA, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015;6(4):261–268. doi:10.1016/j.phrp.2015.08.00226473094
  • Daga AP, Koga VL, Soncini JGM, et al. Escherichia coli Bloodstream Infections in Patients at a University Hospital: virulence Factors and Clinical Characteristics. Front Cell Infect Microbiol. 2019;9:191. doi:10.3389/fcimb.2019.0019131245301
  • Sonnen AF-P, Henneke P. Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol. 2013;2013.
  • Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control. 2018;7(1):118. doi:10.1186/s13756-018-0411-430305891
  • Abdi S, Ranjbar R, Vala MH, Jonaidi N, Bejestany OB, Bejestany FB. Frequency of bla TEM, bla SHV, bla CTX-M, and qnrA among Escherichia coli isolated from urinary tract infection. Arch Clin Infect Dis. 2014;9(1):e18690. doi:10.5812/archcid.18690
  • Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Correlation between hlyA and cnf1 virulent genes with antibiotic resistance and non-ESBLs escherichia coli isolates collected from patient with urinary tract infections in Kerman, Iran. Arch Pediatr Infect Dis. 2017;5(4):e61653. doi:10.5812/pedinfect.61653
  • Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence and molecular characteristics of sequence type 131 clone among clinical uropathogenic Escherichia coli isolates in Riyadh, Saudi Arabia. Saudi J Biol Sci. 2020;27(1):296–302. doi:10.1016/j.sjbs.2019.09.02031889850
  • Ramirez MS, Traglia GM, Lin DL, Tran T, Tolmasky ME. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the klebsiella pneumoniae paradigm. Microbiol Spectr. 2014;2(5):1–15. doi:10.1128/microbiolspec.PLAS-0016-2013
  • Turton J, Davies F, Turton J, Perry C, Payne Z, Pike R. Hybrid resistance and virulence plasmids in “high-risk” clones of klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms. 2019;7(9):326. doi:10.3390/microorganisms7090326
  • Rubini D, Varthan PV, Jayasankari S, Vedahari BN, Nithyanand P. Suppressing the phenotypic virulence factors of Uropathogenic Escherichia coli using marine polysaccharide. Microb Pathog. 2020;141:103973. doi:10.1016/j.micpath.2020.10397331927002
  • Escudeiro P, Pothier J, Dionisio F, Nogueira T. Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes. mSphere. 2019;4(3):e00135–e00119. doi:10.1128/mSphere.00135-1931043514